跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高育瑞
研究生(外文):Yu-JuiKao
論文名稱:可撓式氧化鋅和二氧化矽奈米複合薄膜solar-blind光偵測器
論文名稱(外文):Flexible ZnO-SiO2 nanocomposites solar-blind photodetector
指導教授:賴韋志
指導教授(外文):Wei-Chih Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:氧化鋅奈米複合薄膜可撓式光偵測器金半金結構撓曲
外文關鍵詞:ZnOnanocompositeflexible photodetectorMSM structurebending
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用磁控濺鍍機(Magnetron sputter),在室溫下沉積氧化鋅和二氧化矽奈米複合薄膜(ZnO-SiO2 nanocomposite)作為吸收層,應用於軟性塑膠基板(polyethersulfone,PES),製作出具有高偵測率(Detectivity)及低雜訊之可撓式solar-blind光偵測器(flexible solar-blind photodetector)。在逆向偏壓10 V下,元件的響應峰值位於240 nm,光響應度(responsivity)和量子效率(quantum efficiency)分別為0.75 A/W和482%,並且具有約五個數量級的紫外光對可見光拒斥比(UV-to-visible rejection ratio)。
利用有機矽基薄膜(SiOx(CH3))作為氧化鋅和二氧化矽奈米複合薄膜(ZnO-SiO2 nanocomposites)和基板間的緩衝層,有效的降低奈米複合薄膜內部應力,提升光偵測器的元件特性,並且降低奈米複合薄膜沉積於塑膠(PES)和藍寶石(sapphire)不同基板上所造成的元件特性差異。
可撓式光偵測器經過撓曲(bending)量測後,其光響應度(responsivity)和紫外光對可見光的拒斥比(UV-to-visible rejection ratio)皆隨著曲率半徑越小而有些微的衰減,然而,元件依舊具有良好的光電特性,尤其是具有有機矽基薄膜(SiOx(CH3))緩衝層的可撓式光偵測器(flexible photodetector),其緩衝層減緩撓曲時施加於奈米複合薄膜上的應力(stress),因此減緩光電特性的衰退。
In this research, we deposited ZnO-SiO2 nanocomposite by magnetron sputter at room temperature and used it as the absorption layer on the flexible polyethersulfone (PES) substrate to fabricate a high detectivity and low noise flexible solar-blind photodetector. At a 10 V reverse bias, the maximum responsivity value and quantum efficiency of the device were 0.75 A/W and 482% at 240 nm respectively, and it showed a high UV-to-visible rejection ratio up to ~105.
We used silicon-based organic thin film (SiOx(CH3)) as the buffer layer between ZnO-SiO2 nanocomposite and substrate. The buffer layer enhanced the characteristics of photodetectors because it suppressed the stress of ZnO-SiO2 nanocomposite effectively. It also reduced the characteristic difference between nanocomposites deposited on polyethersulfone (PES) and sapphire.
By bending measurement, the responsivity and UV-to-visible rejection ratio of flexible photodetectors slightly decayed when the radius of curvature decreased. However, all devices still remain favorable photoelectric properties, especially the flexible photodetector with silicon-based organic thin film (SiOx(CH3)). The SiOx(CH3) layer released stress on the nanocomposite during bending measurement; therefore, the reduction of photoelectric properties was suppressed.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 序論 1
1-1 氧化鋅奈米結構之發展 2
1-2 光偵測器之簡介 4
1-3 研究動機 5
參考文獻 7
第二章 理論基礎 11
2-1 光偵測器運作原理 11
2-1-1 金屬-半導體之蕭特基能障原理 11
2-1-2 金屬-半導體-金屬之蕭特基光偵測器運作原理 20
2-2 光響應度和量子效率 23
2-3 雜訊等效功率和偵測率 26
參考文獻 29
第三章 元件結構與製程 32
3-1 製程和量測儀器介紹 32
3-2 元件結構與製程步驟 36
第四章 實驗結果與討論 44
4-1 氧化鋅和二氧化矽奈米複合薄膜特性分析 44
4-1-1 薄膜應力量測 44
4-1-2 穿透率量測 46
4-2 光響應量測之特性分析 49
4-2-1 暗電流與光電流之比較 49
4-2-2 光響應度之比較 53
4-2-3 響應時間之分析 59
4-3 不同照光強度下之元件特性分析 64
4-4 雜訊等效功率和偵測率之特性分析 70
4-5 撓曲特性分析 76
參考文獻 84
第五章 結論和未來展望 86
5-1 結論 86
5-2 未來展望 89
第一章參考文獻
[1]T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors, Electron. Lett., vol. 36, pp.1581, 2000.
[2]M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasinghame, and A. R. Bhattarai, Schottky barrier photodetector based on Mg‐doped p‐type GaN films, Appl. Phys. Lett., vol. 63, pp. 2455, 1993.
[3]A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y. M. Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo, and J.-F. Hochedez, “193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl. Phys. Lett., vol. 92, 053501, 2008.
[4]Meiyong Liao, Xi Wang, Tokuyuku Teraji, Satoshi Koizumi, and Yasuo Koide, Light intensity dependence of photocurrent gain in single-crystal diamond detectors, Physical Review B vol. 81, 033304 ,2010.
[5]I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong, and G. K. L. Wong, “Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors, Appl. Phys. Lett. Vol. 78, pp.1811 ,2001.
[6]K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer, Appl. Phys. Lett., vol. 84, no. 19, pp. 3810-3812, May 2004.
[7]M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition, Phys. Stat. Sol. RRL, vol. 3, no. 2–3, pp. 88-90, Feb. 2009.
[8]L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays, Appl. Phys. Lett., vol. 94, 203106 ,2009.
[9]Wei-Cheng Lien, Dung-Sheng Tsai, Shu- Hsien Chiu, Debbie G. Senesky, Roya Maboudian, Albert P.Pisano, Jr-Hau He, “Nanocrystalline SiC metal-semiconductor-metal photodetector with ZnO nanorod arrays for high-temperature applications, IEEE ,pp. 1875 – 1878 ,2010.
[10]Shiva Hullavarad, Nilima Hullavarad, David Look, Bruce Claflin “Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors, Nanoscale Res. Lett., vol. 4, pp. 1421–1427, 2009.
[11]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides, Science, vol. 291, pp. 1947 ,2001.
[12]G. Mayer, M. Fonin, U. Rudiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, “ The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering, Nanotechnology, vol. 20, 075601, pp. 1-6, Jan. 2009.
[13]J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, and B. H. Zhao, Z. L. Wang, Sz. Fujita, “ZnO quantum dots synthesized by a vapor phase transport process, Appl. Phys. Lett., vol. 88, 063110, 2006.
[14]M. Vafaee, M. Sasani Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol–gel route, Materials Letters, vol.61, pp. 3265-3268, 2007.
[15]陳佶亨, “磁控濺鍍製作奈米結構氧化鋅發光二極體之研究 , 國立成功大學光電科學與工程研究所,碩士論文(2011)。
[16]E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications, Semicond. Sci , Technol., vol. 13, pp. 1042, 1998.
[17]G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga) N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN, Appl. Phys. Lett., vol. 75, p. 247, 1999.
[18]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind algan p–i–n photodiodes, Appl. Phys. Lett., vol. 74, pp. 1171, 1999.
[19]S. Zh. Karazhanov, P. Ravindran, H. Fjellvag, and B. G. Svensson, Electronic structure and optical properties of ZnSiO3 and Zn2SiO4, J. Appl. Phys., vol.106, 123701 ,2009.
[20]J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering “, J. Appl. Phys., vol.97, 103509 ,2005.
[21]H. Amekura, K. Kono, N. Kishimoto, and C. Buchal, Formation of zinc-oxide nanoparticles in SiO2 by ion implantation combined with thermal oxidation, Nucl. Instrum. Methods Phys. Res. B, vol. 242, pp. 96 ,2006.
[22]黃文雄, 製程參數對薄膜應力影響之研究, 國立中央大學光電科學研究所,碩士論文(2001)。
[23]A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, Hideki Minoura, Ajay K. Sarkar, Atsuya Akiba, Atsushi Kamiya, Tamio Endo, “Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique, Thin Solid Films, vol. 496, pp. 112–116, 2006.

第二章參考文獻
[1]Dieter K. Schroder, “Semiconductor material and device characterization, A Wiley-Interscience Publication, chap. 3, 1998.
[2]S. M. Sze, “Semiconductor Device Physics and Technology 2nd Edition, WILEY, chap.7.1, 2001.
[3]D. A. Neamen, “半導體物理與元件(三版), 麥格羅希爾出版, chap.9.1, 2003.
[4]施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
[5]J. C. Carrano, T. Li, P.A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors, Appl. Phys. Lett., vol. 72, pp. 542 ,1998.
[6]By Liang Li, Pooi See Lee, Chaoyi Yan, Tianyou Zhai, Xiaosheng Fang, Meiyong Liao, Yasuo Koide, Yoshio Bando, and Dmitri Golberg, “Ultrahigh-Performance Solar-Blind Photodetectors Based on Individual Single-crystalline In2Ge2O7 Nanobelts, Adv. Mater., vol. 22, pp. 5145–5149, 2010.
[7]Kai Huang, Qing Zhang, Feng Yang, and Deyan He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire, Nano Res., vol. 3, pp. 281–287, 2010.
[8]Yizheng Jin, Jianpu Wang, Baoquan Sun, James C. Blakesley, and Neil C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles, Nano Lett., vol. 8, no. 6, 2008.
[9]Chun Li, Yoshio Bando, Meiyong Liao, Yasuo Koide, and Dmitri Golberg, “Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire, Appl. Phys. Lett., vol. 97, 161102, 2010.
[10]Meiyong Liao, Xi Wang, Tokuyuku Teraji, Satoshi Koizumi, and Yasuo Koide, “Light intensity dependence of photocurrent gain in single-crystal diamond detectors, Physical Review B, vol. 81, 033304 ,2010.
[11]鄭旭志, “光纖感測技術。
[12]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors : Comparing lateral and vertical geometry, Appl. Phys. Lett., vol. 80, no. 3, pp. 347, 2002.
[13]Ching-Ting Lee, Fellow, IEEE, Tzu-Shun Lin, and Hsin-Ying Lee, “Mechanisms of Low Noise and High Detectivity of p-GaN/i-ZnO/n-ZnO : Al-Heterostructured Ultraviolet Photodetectors, IEEE Photonics Technology Letters, vol. 22, no. 15, august 1, 2010.
[14]Shi-Ming Peng, Yan-Kuin Su, Liang-Wen Ji, Sheng-Joue Young, Chi-Nan Tsai, Cheng-Zhi Wu, Wan-Chun Chao, Wei-Bin Cheng, and Chien-Jung Huang, “Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods, Electrochemical and Solid-State Letters, vol. 14, no. 3, pp. J13-J15, 2011.
[15]Yu-Zung CHIOU, “DC and Noise Characteristics of 4H-SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors, Japanese Journal of Applied Physics, vol. 43, no. 5A, pp. 2432–2434, 2004.
[16]S.J. Young, L.W. Ji, S.J. Chang, Y.K. Su, “ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes, Journal of Crystal Growth, vol. 293, pp. 43–47, 2006.
[17]K.K. Hung, P.K. Ko, C. Hu, Y.C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors, IEEE Transactions on Electron Devices vol. 37, no. 3, march 1990.

第四章參考文獻
[1]Kai Huang, Qing Zhang, Feng Yang and Deyan He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanawire, Nano Res., vol. 3, pp. 281-287, 2010.
[2]V. Musat, E. Fortunato, S. Petrescu, and A. M. Botelho do Rego, “ZnO/SiO2 nanocomposite thin films by sol–gel method, phys. stat. sol. (a), vol. 205, no. 8, pp. 2075–2079, 2008.
[3]陳佶亨, “磁控濺鍍製作奈米結構氧化鋅發光二極體之研究 , 國立成功大學光電科學與工程研究所,碩士論文(2011)。
[4]Chun Li, Yoshio Bando, Meiyong Liao, Yasuo Koide, and Dmitri Golberg, “Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire, Appl. Phys. Lett., vol. 97, 161102, 2010.
[5]Meiyong Liao, Xi Wang, Tokuyuku Teraji, Satoshi Koizumi, and Yasuo Koide, “Light intensity dependence of photocurrent gain in single-crystal diamond detectors, Physical Review B, vol. 81, 033304, 2010.
[6]By Liang Li, Pooi See Lee, Chaoyi Yan, Tianyou Zhai, Xiaosheng Fang, Meiyong Liao, Yasuo Koide, Yoshio Bando, and Dmitri Golberg, “Ultrahigh-Performance Solar-Blind Photodetectors Based on Individual Single-crystalline In2Ge2O7 Nanobelts, Adv. Mater., vol. 22, pp. 5145–5149, 2010.
[7]Yizheng Jin, Jianpu Wang, Baoquan Sun, James C. Blakesley, and Neil C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles, Nano Lett., vol. 8, no. 6, 2008.
[8]X.G. Zheng, Q.Sh. Li, J.P. Zhao, D. Chen, B.Zhao, Y.J. Yang, L.Ch. Zhang,Photoconductive ultraviolet detectors based on ZnO films, Applied Surface Science, vol. 253, pp. 2264–2267, 2006.
[9]Shi-Ming Peng, Yan-Kuin Su, Liang-Wen Ji, Sheng-Joue Young, Chi-Nan Tsai, Cheng-Zhi Wu, Wan-Chun Chao, Wei-Bin Cheng, and Chien-Jung Huang, “Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods, Electrochemical and Solid-State Letters, vol. 14, no. 3, pp. J13-J15, 2011.
[10]W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate, Journal of The Electrochemical Society, vol. 157, no. 2, pp. K30-K33, 2010.
[11]Kenneth J. Loh, Donghee Chang, “Zinc oxide nanoparticle-polymeric thin films for dynamic strain Sensing, J Mater Sci, vol. 46, pp. 228–237, 2011.
[12]Qing Yang, Xin Guo, Wenhui Wang, Yan Zhang, Sheng Xu, Der Hsien Lien, and Zhong Lin Wang, “Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect, ACS nano, vol. 4, no. 10, pp. 6285–6291, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊