跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗儀
研究生(外文):Tzung-YiLin
論文名稱:多模波導絕熱模態轉換與頻寬分析
論文名稱(外文):Adiabatic Mode Conversion and Bandwidth Analysis Based on CGPH in Multimode Waveguide
指導教授:曾碩彥曾碩彥引用關係
指導教授(外文):Shuo-Yen Tseng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:光波導絕熱模態轉換器受激拉曼絕熱過程光波導耦合
外文關鍵詞:Modes converterAdiabatic modes converterStimulated Raman adiabatic passageCouple mode theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功利用電腦產生的平面全息圖在多模波導上建立相似量子力學絕熱轉換過程的絕熱模態轉換器。這個結構有絕佳的模態轉換效率以及解決傳統模態轉換器對於決定轉換長度的困難。此外,我們對此結構進行可調波長測試,發現此裝置約有20nm的頻寬。我們利用耦合理論得到的數值解與廣角光速傳播法的結果做比較,發現兩種理論得到的結果趨勢耦合的很好。最後,我們成功利用量子力學的絕熱條件把裝置的模態轉換長度縮短至14.7mm。在此長度下,已足夠使得模態得到完美的絕熱轉換。
We have proposed an adiabatic computer-generated planar hologram (CGPH) structure to be a mode converter. This structure has excellent mode conversion property and eases the difficulty in defining the exact conversion length. Moreover, the structure has a bandwidth of 20 nm. The results from numerical calculations based on the coupled mode theory and beam propagation simulation agree very well. We successfully reduce the length of adiabatic mode converter to 14.7mm at which the complete power transfer can be achieved.
口試合格證明書…………………………………………………………………Ⅰ
中文摘要…………………………………………………………………………Ⅱ
Abstract……………………………………………………………………………Ⅲ
Acknowledgements………………………………………………………………Ⅳ
Table of contents………………………………………………………………Ⅴ
List of figures………………………………………………………………………Ⅶ
1 Introduction……………………………………………………………………1
1.1 Introduction………………………………………………………………1
1.2 Motivation…………………………………………………………………2
2 Theory of Multimode Waveguides……………………………………………3
2.1 Basic equation for electric field in optical waveguides…………………3
2.1.1Wave equation………………………………………………………3
2.1.2 Modes expression and basic formula of multimode waveguide……5
2.2 Effective index method……………………………………………………9
2.3 Finite difference wide-angle beam propagation method………………13
2.4 Couple mode theory……………………………………………………21
2.4.1 Codirectional coupling……………………………………………24
3 Analogy Between Waveguide Optics and Quantum Theory……………28
3.1 Schematic of the optical ridge waveguide used for simulation…………28
3.2 The adiabatic three-level system in quantum theory……………………31
3.3 Similarity between the waveguide optics and quantum theory…………39
4 Simulation Results and Discussion……………………………………………44
4.1 Two modes directional converter based on optical multimode waveguide………………………………………………………………44
4.2 Adiabatic three modes converter………………………………………48
4.2.1 Mode1 transfer to mode3 via an idler mode2 at the central wavelength 1.55um……………………………………………………………48
4.2.2 Bandwidth analysis of the Gaussian-like distribution adiabatic mode converter……………………………………………………………54
4.3 Shortest length for adiabatic three modes converter……………………56
4.3.1 Derivation of the shortest converter length……………………56
4.3.2 The verify of shorter convertible length……………………………58
5 Conclusion……………………………………………………………………62
Reference…………………………………………………………………………64
Appendix…………………………………………………………………………68
[1] G. E. Keiser, (1999), A review of WDM technology and applications. Optical Fiber Technology, 5(1): 3-39.
[2] A. Banerjee, Y. Park, et al., (2005), Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited], J. Opt. Netw, 4(11): 737-758.
[3] S. J. B. Yoo, (1996). Wavelength conversion technologies for WDM network applications., Journal of Lightwave Technology, 14(6): 955-966.
[4] S. Berdagué, P. Facq (1982), Mode division multiplexing in optical fibers. Apply. Optics, 21(11): 1950-1955.
[5] J. B. Khurgin, M. W. Pruessner, et al. (2007), Add-drop filters based on mode-conversion cavities. Optics Letters., 32(10): 1253-1255.
[6] M. Greenberg, M. Orenstein (2005), Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Optics Express, 13(23): 9381-9387.
[7] P. Joongwoo Brian, Y. Dong-Min, et al. (2006), Variable Optical Mode Generator in a Multimode Waveguide. Photonics Technology Letters, IEEE, 18(20): 2084-2086.
[8] J. Castro, D. F. Geraghty, et al. (2005), Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Optics Express, 13(11): 4180-4184.
[9] A. Yariv (1973), Coupled-mode theory for guided-wave optics. Journal of Quantum Electronics, IEEE, 9(9): 919-933.
[10] V. M. Schneider, H. T. Hattori (2000), High-tolerance power splitting in symmetric triple-mode evolution couplers. Journal of Quantum Electronics, IEEE, 36(8): 923-930.
[11] E. Paspalakis, (2006), Adiabatic three-waveguide directional coupler. Optics Communications, 258(1): 30-34.
[12] E. Narevicius, R. Narevich, et al. (2005), Adiabatic mode multiplexer for evanescent-coupling-insensitive optical switching. Optics Letters, 30(24): 3362-3364.
[13] S. Longhi, (2006), Optical realization of multilevel adiabatic population transfer in curved waveguide arrays. Physics Letters A, 359(2): 166-170.
[14] C. F. Chen, Y. S. Ku, et al. (2007), Optimal design of coupling waveguide structure for adiabatic optical directional full couplers weighted by sin-square and raised-cosine functions. Optics Communications, 280(1): 79-86.
[15] K. Bergmann, H. Theuer, et al. (1998), Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 70(3): 1003.
[16] S. Y. Tseng., M. C. Wu. (2010), Adiabatic Mode Conversion in Multimode Waveguides Using Computer-Generated Planar Holograms. Photonics Technology Letters, IEEE, 22(16): 1211-1213.
[17] H. C. Liu, A. Yariv (2009), Grating induced transparency (GIT) and the dark mode in optical waveguides. Optics Express, 17(14): 11710-11718.
[18] M. C. Wu, F. C. Hsiao, et al. (2011), Adiabatic Mode Conversion in Multimode Waveguides Using Chirped Computer-Generated Planar Holograms. Photonics Technology Letters, IEEE, 23(12): 807-809.
[19] S. Y. Tseng., M. C. Wu. (2010), Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides. Journal of Lightwave Technology, 28(24): 3529-3534.
[20] F. C. Hsiao., T. Y. Lin., et al. (2011), Bandwidth Analysis of Waveguide Mode Converters Based on Optical Analogy of Stimulated Raman Adiabatic Passage in Engineered Multimode Waveguides. Photonics Journal, IEEE, 3(6): 1198-1205.
[21] O. Katsunari (2006), Fundamentals of Optical Waveguides, (2sec ed), AMSETERDAM, Elsevier Inc
[22] S. Y. Tseng. (2006), Development of Linear and Nonlinear Component for Integrated Optical Signal Processing., Unpublished Doctoral Dissertation, University of Maryland, College Park
[23] K. Kawano., T. Kitoh (2001), Introduction to optical waveguide analysis solving, New York, JOHN WILEY & SONS, Inc.
[24] G. R. Hadley (1992), Multistep Method for Wide-Angle Beam Propagation. Optics Letters, 17(24): 1743-1745.
[25] G. R. Hadley (1992), Wide-Angle Beam Propagation Using PADE Approximation Operators. Optics Letters, 17(20): 1426-1428.
[26] A. Yariv (2007), Photonics Optical Electronics in modern, (6sixth ed), Auckland, Oxford University Press, Inc.
[27] S. Y. Tseng, Kim Y., et al. (2006), Implementation of discrete unitary transformations by multimode waveguide holograms. Applied Optics, 45(20): 4864-4872.
[28] J. R. Kuklinski, U. Gaubatz, et al. (1989), Adiabatic population transfer in a three-level system driven by delayed laser pulses. Physical Review A, 40(11): 6741-6744.
[29] L. Windholz (2001), Coherent Population Trapping in Multi-Level Atomic Systems. Physica Scripta 2001, (T95): 81.
[30] S. E. Harris (1997), Electromagnetically Induced Transparency. Physics Today, 50(7): 36-42.
[31] J. P. Marangos (1998), Electromagnetically induced transparency. Journal of Modern Optics, 45(3): 471 - 503.
[32] M. Fleischhauer, A. Imamoglu, et al. (2005), Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics, 77(2): 633.
[33] K. J. Boller, A. Imamolu, et al. (1991), Observation of electromagnetically induced transparency. Physical Review Letters, 66(20): 2593.
[34] U. Gaubatz, P. R., S. Schiemann, and K. Bergmann (1990), Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laserfields. A new concept and experimental results. J. Chern. Phys.
[35] E. Peral, A. Yariv (1999), Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering. Journal of Lightwave Technology, 17(5): 942-947.
[36] X. K. Sun., H. C. Liu, et al. (2009), Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Optics. Letters, 34(3): 280-282.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 劉怡芳〈影視史學與歷史學科能力—簡介「文華高中影視史學課程」〉,《清華歷史教學》,18期,頁107-134。
2. 劉怡芳〈影視史學與歷史學科能力—簡介「文華高中影視史學課程」〉,《清華歷史教學》,18期,頁107-134。
3. 葉小兵,〈簡介英國對學生歷史意識的最新研究〉,《清華歷史教學》第二期,1993,頁115-125。
4. 葉小兵,〈簡介英國對學生歷史意識的最新研究〉,《清華歷史教學》第二期,1993,頁115-125。
5. 黃乃琦,〈多元動態「影視史學」的教學分析〉,《歷史月刊》,170期,2002,頁111-115。
6. 黃乃琦,〈多元動態「影視史學」的教學分析〉,《歷史月刊》,170期,2002,頁111-115。
7. 曾怡菁〈影視教學的嘗試—以木柵高工高職歷史教學為例〉,《木柵高工學報》,12期,2008,頁95-118。
8. 曾怡菁〈影視教學的嘗試—以木柵高工高職歷史教學為例〉,《木柵高工學報》,12期,2008,頁95-118。
9. 陳登武,〈影視教材在高中歷史教學的應用—以隋唐史教學為中心〉,《歷史教育》,14期,2009,頁233-264。
10. 陳登武,〈影視教材在高中歷史教學的應用—以隋唐史教學為中心〉,《歷史教育》,14期,2009,頁233-264。
11. 許全義,〈歷史教學與公民意識—簡介臺中一中影視史學專題課程〉,《清華歷史教學》,19期,2008,頁21-48。
12. 許全義,〈歷史教學與公民意識—簡介臺中一中影視史學專題課程〉,《清華歷史教學》,19期,2008,頁21-48。
13. 胡昌智,〈什麼是歷史意識〉,《思與言》,21:1,1983,頁2-12。
14. 胡昌智,〈什麼是歷史意識〉,《思與言》,21:1,1983,頁2-12。
15. 周樑楷,〈歷史劇情片的「實」與「用」─以「羅馬帝國淪亡錄」和「神鬼戰士」為例〉,《當代》,第156期,2000年8月,頁48-61。