跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周柏翰
研究生(外文):Po-HanChou
論文名稱:應用不同結構及電化學處理於n型氮化鎵光電解水產氫之研究
論文名稱(外文):Hydrogen Generation From Aqueous Water through Photoelectrolysis Using n-type GaN as Photoelectrode
指導教授:賴韋志
指導教授(外文):Wei-Chih Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:光電解氮化鎵微米及奈米柱狀結構電化學蝕刻
外文關鍵詞:PhotoelectrolysisGaNMicropillarsNanopillarsElectrochemical etching
相關次數:
  • 被引用被引用:2
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用n型氮化鎵半導體材料作為光電解水產氫的工作電極,在照光情況下將水分解成氫氣與氧氣。除了外部製程的改良外,也利用電化學蝕刻的方式提昇光電流。
首先我們在外部製程改良上製作三種不同結構,分別為:利用電感耦合電漿蝕刻及再生長的方式製作出週期性的微米柱狀結構,及週期性的奈米柱狀結構。由光電流量測的結果得知,各結構試片在製程過程中所產生的缺陷,會導致光載子被複合的機率提高,進而降低光電流大小。但在持續加大偏壓下,各結構試片由於表面積增加除了能產生較多的光載子外,也能減少電流擁擠效應造成的負影響。
此外,我們也應用電化學蝕刻的方式於不同濃度的試片,藉由控制電化學蝕刻的時間改變蝕刻深度,再對不同蝕刻深度的試片進行光電化學量測。電化學蝕刻的過程中,發現不同濃度的試片在相同偏壓下,會分別產生樹枝狀孔洞及如拋光般的結果,我們也分別探討上述結果產生的原因。最後,由光電化學量測的結果可知,較低濃度之試片經電化學蝕刻產生的孔洞,能增加參與光電解水反應的表面積,進而減緩電流擁擠效應,且蝕刻深度較深的試片的確可得到較高光電流密度,但電化學蝕刻至孔洞底部的試片卻會造成光電流密度衰減;較高濃度之試片則因大量氧化物產生,導致阻值提高,大幅降低光電流密度。

N-type Gallium Nitride semiconductors were used as working electrodes to generate hydrogen gas through water splitting under illumination. In this study, we promoted the efficiency of hydrogen generation by process refinements and the use of electrochemical etching.
First, we fabricated three different structures:two periodic micropillars made by ICP and regrowth, and periodic nanopillars. Under small bias, the defects due to processes and the recombination centers of the semipolar-oriented GaN would reduce the photocurrent density. Nevertheless, under large bias, we could obtain the higher photocurrent density because the increased area of different structures could alleviate the current crowding effect.
Furthermore, we used the electrochemical etching method to generate deep holes in the n-type GaN, and discussed how the dendritic holes formed. For the high-doped n-GaN, we could observe the complete layer removal and electropolshing, so we discussed the possible causes of electropolishing. Finally, we changed the different etching depths by controlling the etching time, and measured their photocurrent densities.

目錄

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 3
參考文獻 6
第二章 理論基礎 8
2.1 半導體光電化學理論與簡介 8
2.2 電解液中的費米能階 9
2.3 半導體與電解液之界面 10
2.4 平帶電位 11
2.5 光電化學系統 12
參考文獻 24
第三章 研究方法與元件備製 26
3.1 實驗裝置 26
3.2 二極式與三極式量測系統比較 26
3.3 電流-電壓之特性曲線量測 27
3.4 光電化學元件製作 28
3.4.1 週期性微米柱狀結構 29
3.4.2 週期性奈米柱狀結構 33
3.4.3 金屬電極製作 36
3.5 電化學蝕刻裝置 36
參考文獻 44
第四章 實驗結果與討論 45
4.1 利用週期性微米及奈米柱狀結構改善n型氮化鎵光電解水
制氫之研究 45
4.1.1 週期性微米及奈米柱狀結構表面積增加之比較 46
4.1.2 週期性微米及奈米柱狀結構之光電化學特性比較 47
4.1.3 週期性微米及奈米柱狀結構之產氫效率比較 51
4.2 藉由改變n型氮化鎵之電化學蝕刻深度改善光電解水制氫
之研究 52
4.2.1 外加偏壓下不同濃度n型氮化鎵電化學蝕刻產生孔洞
之機制 53
4.2.2 不同蝕刻深度對光電化學特性之比較 57
參考文獻 77
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 80

第一章
[1]S. Arhenius, “On the influence of carbonic acid in the air upon the temperature of the ground, Philosophical Magazine , pp.237-276, 1896.
[2]Hoffert MI, Caldeira K, Benford G, Criswell, Green C, Herzog H, “Adanced technology paths to global climate stability: Energy for a greenhouse planet, Science , pp.981-987, 2002.
[3]Kreuter W, Hofmann H, “Electrolysis: the important energy transformer in aworld of sustainable energy, Int J Hydrogen Energy pp.661-666 , 1998.
[4]Allen J. Bard, Marye Anne Fox, “Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Acc. Chem. Res. vol. 28, pp.141-145, 1995.
[5]許進恭, “氮化物半導體高效率全波段太陽能電池及太陽能光電解氫氣生成元件之研究, 2008.
[6]A. Heller, “Conversion of sunlight into electric power and photoassisted electrolysis of water in photoelectron chemical cells, Acc. Chem. Res., vol. 14, pp.154-162, 1981.
[7]A. Fujishima, K. Honda, “Electrochemical Photolysis of water at a semiconductor electrode, Nature, vol. 238, pp.37-38, 1972.
[8]Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with an electrochemical photocell, J. Electrochem. Soc. vol. 122, pp. 1487-1489, 1975.
[9]A. J. Nozik and R. Memming, “Physical chemistry of Semiconductor – liquid Interfaces, J. Phys. Chem., vol. 100, no. 13, pp. 13061-13078, 1996.
[10]A. J. Nozik, “Electrode materials for photoelectrochemiacl devices,Journal of Crystal Growth, vol. 39, no. 1, pp.200-209, 1977.
[11]K. Fujii, T. Karasawa and K. Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation, Jpn. J. Appl. Phys.,vol. 44, pp. L543-L545, 2005.

第二章
[1]Simon Min Sze, “Semiconductor Devices: Physics and Technology, Jhon Wiley & Sons Inc, 2001.
[2]楊賜麟, “半導體物理與元件, 滄海書局, 2005
[3]A. J. Bard, M. Stratmann, S. Licht, “Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry, John Wiley & Sons, Inc, Volume 6, 2002.
[4]C. A. Grimes, O. K. Varghese, S. Ranian, “Light, Water, Hydrogen-The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer, 2008.
[5]Gerischer H, “Electrochemical photo and solar cell principles and some experiments, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 58, no. 1, pp. 263-274, 1975.
[6]R. Gomer, G. Tryson, “An experimental determination of absolute half-cell emf’s and single ion free energies of solvation, J Chem Phys, vol.66, pp. 4413-4424, 1977.
[7]AJ. Nozik, “Physical Chemistry of Semiconductor-Liquid Interfaces, J. Phys. Chem., vol. 100, pp. 13061-13078, 1996.
[8]Koval CA, Howard JN, “Electron transfer at semiconductor electrode-liquid electrolyte interfaces, Chem. Rev. vol. 92, pp.411-433, 1992.
[9]Lewis NS, “Mechanistic studies of light-induced charge separation at semiconductor / liguid interfaces, Acc. Chem. Res., vol. 23, pp.176-183, 1990.
[10]A. W. Bott, “Electrochemistry of Semiconductors, Current Separa- tions, vol. 17, no. 3, pp. 87-91, 1998.

第三章
[1]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc., 2001.
[2]P. T. Kissinger, W. R. Heineman, “Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker: USA, 1996.
[3]林育詮, “三族氮化物半導體於光電解水產氫之研究, 國立成功大學光電科學與工程研究所碩士論文, 2011.
[4]陳盈宏, “利用空隙陣列結合圖案化基板改善氮化鎵發光二極體之光電特性, 國立成功大學光電科學與工程研究所碩士論文, 2011.

第四章
[1]繆字碩, “光電化學反應在氮化鎵金氧半元件之應用, 國立成功大學光電科學與工程研究所碩士論文, 2009.
[2]I. Waki, D. Cohen, R. Lal, and U. Mishra, “Direct water photoelectrolysis with patterned n-GaN, Appl. Phys. Lett., vol. 91, pp. 093519-093519-3, 2007.
[3]M. Ono, K. Fujii, T. Ito and Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN, J. Chem. Phys., vol. 126, no. 5, pp. 054708-054708-7, 2007.
[4]葉昭呈, “氮化鎵電極光電解水產氫之光電化學特性研究, 國立成功大學光電科學與工程研究所碩士論文, 2010.
[5]K. Fujii, Y. Iwaki, H.Masui, T. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. Speck, S. Denbarrs, S. Nakamura and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN, Jpn. J. Appl. Phys., vol. 44, pp. 6573-6578, 2007.
[6]R. C. Kainthla, B. Zelenay, and J. O’M. Bockris, “Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis , Journal of The Electrochemical Society, vol. 134, no. 4, pp. 841-845, 1987.
[7]K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui and H. Hasegawa, “Minority carrier diffusion length in GaN: Dislocation density and doping concertration dependence, Appl. Phys. Lett., vol. 86, pp. 052105-052105-3, 2005.
[8]Y. Zhang, S. W. Ryu, C. Yerino, B. Leung, Q. Sun, Q. Song, H. Cao and J. Han, “A conductively-based selective etching for next generation GaN devices, Phys. Status Solidi B., vol. 247, no. 7, pp. 1713-1716, 2010.
[9]Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee and J. Han, “The fabrication of large-area,free standing GaN by a novel nanoetching process, Nanotechnology, vol. 22, no. 4, pp. 045603, 2011.
[10]S. W. Ryu, Y. Zhang, B. Leung, C. Yerino and J. Han, “Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode, Semicond. Sci. Technol., vol. 27, no. 1, pp. 015014, 2012.
[11]I. Tiginyanua, S. Langa, H. Foell and V. Ursachi, “Porous III-V Semiconductors, onlinebook(www.porous-35.com/), 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊