跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林治均
研究生(外文):Chih-ChunLin
論文名稱:非線性光學內視鏡之色散補償
論文名稱(外文):Dispersion Compensation for Nonlinear Optical Endoscopes
指導教授:陳顯禎
指導教授(外文):Shean-Jen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:45
中文關鍵詞:非線性光學內視鏡色散補償光柵主動式脈衝壓縮
外文關鍵詞:nonlinear optical endoscopedispersion compensationgratingactive pulse compression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討非線性光學內視鏡之色散補償方式。一條長度一公尺核心直徑4微米的雙包覆層光纖(double-clad fiber)用來傳遞飛秒雷射脈衝與接收螢光訊號,但也造成了大量的色散和非線性效應。由於試圖利用光纖傳遞出高峰強度的雷射脈衝,因此色散補償變得非常重要。光柵為一種常被用在光纖色散補償用途的被動式元件,但在補償二階色散之餘卻會增加大量無法補償的三階色散,因此在高階色散的部分仍有改善空間。另外,實作上很難將色散以及其他影響脈衝寬度的因素完全精準的預測,因此很難將脈衝狀況最佳化。
主動式色散補償元件如空間光調變器和可調變聚焦鏡可以藉由電腦演算法使其自行修正達到最佳化,同時也具有二階和高階色散的補償能力;但補償量則無法完全消除光纖所造成的色散。本研究利用可調變聚焦鏡搭配光柵,除了能夠補償二階色散外,也能補償被動式元件較難補償或無法補償的其它影響因素,如此使得多光子激發效率獲得改善。實驗中,光柵被用來補償大部分的二階色散,而可調變聚焦鏡則被用來補償剩餘之二階色散以及其他影響脈衝狀況的因素。為了實現可調變聚焦鏡的修正效果,雙光子激發螢光的光子數被當作可調變聚焦鏡的回授信號,找出能產生最高螢光信號的聚焦鏡面型。10微米螢光球影像對比的增加則可在可調變聚焦鏡修正後觀測出。平均光子數與最高光子數的增加分別為64%和22%。

The theory and various methods of dispersion compensation for nonlinear optical endoscopes have been investigated in this thesis. A one meter long double-clad fiber with 4 μm core diameter is used for femtosecond pulse delivery and fluorescence signal collection, which also introduces a large amount of dispersion and nonlinear effects. Since high peak intensity laser pulses are to be delivered at the fiber scanning head, dispersion compensation becomes a critical consideration. Gratings are a type of passive dispersion compensating element that are commonly used in fiber endoscopic systems; however, upon compensating second order dispersion, it generates a large amount of uncompensated third order dispersion, leaving room for improvement in the higher order dispersion region. In addition, the precise amount of dispersion and other pulse distorting effects are difficult to precisely identify, thus limiting the possibility for optimizing the pulse condition.
Active dispersion compensation elements such as spatial light modulators and deformable mirrors have the advantage of optimizing pulse conditions by the aid of computer algorithms for self-correction, and also the capability of compensating second and higher order dispersion; but the compensating amount is not enough to fully cover the dispersion caused by the fiber. In this thesis, by utilizing a deformable mirror combined with gratings for compensating not only second order dispersion, but also other pulse distorting effects that were difficult or unable to compensate using passive components, improvement of multiphoton excitation efficiency could be achieved. Gratings are used to compensate the majority of second order dispersion, while the deformable mirror is used to compensate residual second order dispersion and other pulse distorting effects. To demonstrate the effect of deformable mirror corrections, two photon excited fluorescence photon counts are used as a feedback signal for the deformable mirror to find the shape that yields the highest photon count. Increased contrast from images of 10 μm fluorescence beads could be observed after the deformable mirror correction. Improvements in the average and maximum photon count are 64% and 22%, respectively.

Abstract I
摘要 III
Acknowledgements IV
Contents V
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Outline 3
Chapter 2 Characteristics of Femtosecond Pulsed Lasers 4
2.1 Nonlinear Schrodinger Equation 4
2.2 Second Order Dispersion and Third Order Dispersion 5
2.3 Self-Phase Modulation 8
2.4 Temporal Focusing 13
Chapter 3 Dispersion Compensation Methods 15
3.1 Dispersion Compensation with Prisms 16
3.2 Dispersion Compensation by Gratings 16
3.3 Dispersion Compensation by Deformable Mirrors 17
Chapter 4 Nonlinear Optical Endoscopes 19
4.1 Main Components 19
4.1.1 Ti:Sapphire Oscillator 19
4.1.2 Autocorrelator 20
4.1.3 Photon Counting Discriminator 24
4.1.4 Deformable Mirror 26
4.1.5 Fiber Scanning Probe 27
4.2 Nonlinear Optical Endoscopes 29
4.2.1 System Setup 29
4.2.2 Simulation Results of the Nonlinear Optical Endoscope 32
4.2.3 Experimental Results 36
Chapter 5 Conclusions and Future Developments 41
References 43

1.W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy, Science 248, 73-76 (1990).
2.D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue, PNAS 108, 17598-17603 (2011).
3.L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror, Opt. Express 14, 1027-1032 (2006).
4.M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope, Opt. Lett. 31, 1076-1078 (2006).
5.C. Hoy, N. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniturized probe for femosecond laser microsurgery and two-photon imaging, Opt. Express 16, 9996-10005 (2008).
6.A. Uchugonova, H. Zhang, C. Lemke, and K. Konig, “Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses, Proc. of SPIE 7903, 79031N-1-79031N-8 (2011).
7.E. B. Treacy, “Optical pulse compression with diffraction gratings, IEEE J. Quantum Electron. QE-5, 454-458 (1969).
8.S. Kane and J. Squier, “Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification, J. Opt. Soc. Am. B 14, 661-665 (1997).
9.G. P. Agrawal, Non-linear Fiber Optics (Academic Press, 1995).
10.陳偉麟,掃描式光纖內視顯微術應用於非線性光學影像,成功大學光電科學與工程研究所碩士論文,2011。
11.C. Lefort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm, Opt. Lett. 36, 292-294 (2011).
12.J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006).
13.Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging, Bio. Opt. Exp. 1, 1159-1172 (2010).
14.E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing, Opt. Lett. 30, 1686-1688 (2005).
15.M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning, Opt. Express 14, 12243-12254 (2006).
16.A. M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009).
17.T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime, Opt. Express 17, 1240-1247 (2009).
18.E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses, Opt. Lett. 31, 3363-3365 (2006).
19.P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression, Electron. Lett. 29, 1414-1415 (1993).
20.Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues, Opt. Express 10, 7907-7915 (2009).
21.E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors, Opt. Lett. 24, 493-495 (1999).
22.D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression, Opt. Lett. 22, 1793-1795 (1997).
23.Griffin Ti:Sapphire Laser Instruction Manual (KMLabs, 2008).
24.F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, “Adaptive control of femtosecond pulse propagation in optical fibers, Opt. Lett. 26, 938-940 (2001).
25.Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, “Third-order spectral phase compensation in parabolic pulse compression, Opt. Express 15, 9372-9377 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top