跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏霖
研究生(外文):Po-LinChen
論文名稱:硫化鉛量子點敏化光檢測器之研究
論文名稱(外文):The study of PbS quantum dot sensitized photodetector
指導教授:郭宗枋
指導教授(外文):Tzung-Fang Guo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:量子點光檢測器四氯化鈦缺陷態
外文關鍵詞:quantum dotphotodetectorTiCl4trap state
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
在本碩士論文之中,我們提出以PbS量子點材料作為吸光層製作量子點敏化光檢測器,藉由使用染料敏化太陽能電池結構,利用多孔性二氧化鈦光電極,用連續式離子層吸附與反應(the successive ionic layer adsorption and reaction, SILAR)製程方法吸附PbS量子點材料,並藉由TiCl4處理,修飾二氧化鈦光電極之介面,以增加元件之光響應表現。並發現當經過TiCl4處理後,元件之電性以及光響應特性有大幅的變化,不論在光響應速度或是光響應強度上皆有提升。推測此變化最主要來自於缺陷態以及二氧化鈦能階結構之改變。最後發現,TiCl4處理時間會對缺陷態之深度和數量分布造成差異,並從缺陷態對元件造成的影響提出機制並驗證。
The purpose of this thesis is to fabricate a PbS quantum dot sensitized photodetector. We use mesoporous TiO2 to adsorb PbS quantum dot and take the advantage of DSSCs to improve the performance of device. SILAR process, which provides a better response speed for device, is also used to replace the common colloidal quantum dot process. Furthermore, we find that the response speed, range, and intensity of device can be improved by using TiCl4 treatment of TiO2, which is due to the conduction band shift and the trap state of TiO2. We can further use different TiCl4 treatment times to control the trap state’s number and depth of TiO2. Finally, we propose and verify the mechanism for the influence of the trap state on the device.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 光檢測器類型與運作原理 2
1-3 研究動機與目的 5
第二章 實驗原理與文獻回顧 6
2-1 染料敏化太陽能電池 6
2-1.1 染料敏化太陽能電池結構 7
2-1.2 染料敏化太陽能電池工作原理 13
2-1.3 膠態與固態電解質 15
2-1.4 半導體量子點在染料敏化電池的應用 18
2-2 PbS量子點特性 19
2-2.1 量子侷限效應 20
2-2.2 多重激子產生與離子化衝擊效應 24
2-3 PbS量子點於光檢測器之應用 27
2-4 結論 30
第三章 實驗流程與量測方法 31
3-1 實驗流程 31
3-1.1 固態PbS量子點敏化光檢測器元件製作 32
3-1.2 PbS量子點製備方式 37
3-2 電性量測 39
3-2.1 IV電性量測系統 39
3-2.2 IPCE量測系統 41
3-3 Response time 量測系統 42
3-4 Transient photovoltage and photocurrent decay量測系統 43
3-5 結論 45
第四章 TiCl4處理對PbS量子點敏化光檢測器之影響 46
4-1 前言 46
4-2 PbS量子點大小對光響應範圍之探討 48
4-2.1 PbS顆粒大小對吸收光譜之影響 48
4-2.2 吸附次數對PbS量子點表面形貌之影響 50
4-3 PbS量子點敏化光檢測器元件 53
4-4 TiCl4處理對PbS量子點敏化光檢測器之探討 58
4-4.1 TiCl4處理對元件響應速度之探討 59
4-4.2 TiCl4處理對元件電性之探討 69
4-4.3 TiCl4處理對TiO2光電極缺陷態之探討 73
4-4.4 TiCl4處理對元件光響應之探討 76
4-5 結論 81
第五章 總結與未來展望 82
5.1 總結 82
5.2 未來展望 83
第六章 參考文獻 84
自述 92

[1]J. B. D. Soole and H. Schumacher, InGaAs metal-semiconductor-
metal photodetectors for long wavelength optical communications, Ieee Journal of Quantum Electronics, vol. 27, pp. 737-752, 1991.
[2]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology, vol. 22, pp. 93-97, 2004.
[3]T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nature Photonics, vol. 3, pp. 332-336, 2009.
[4]L. M. Vatsia, Atmospheric optical environment, Research and Development Technical Report ECOM-7023, 1972.
[5]G. Konstantatos and E. H. Sargent, Nanostructured materials for photon detection, Nature Nanotechnology, vol. 5, pp. 391-400, 2010.
[6]B. Oregan and M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature, vol. 353, pp. 737-740, 1991.
[7]M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic Chemistry, vol. 44, pp. 6841-6851, 2005.
[8]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, Journal of the American Ceramic Society, vol. 80, pp. 3157-3171, 1997.
[9]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science, vol. 334, pp. 629-634, 2011.
[10]M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.
[11]M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. Asoka Kumara, and S. Kaneko, Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 167-172, 2004.
[12]H. H. Ou and S. L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Separation and Purification Technology, vol. 58, pp. 179-191, 2007.
[13]D. C. Pan, N. N. Zhao, Q. Wang, S. C. Jiang, X. L. Ji, and L. J. An, Facile synthesis and characterization of luminescent TiO2 nanocrystals, Advanced Materials, vol. 17, pp. 1991-1995, 2005.
[14]N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, Journal of Physical Chemistry B, vol. 103, pp. 3308-3314, 1999.
[15]S. Chaberek and R. J. Allen, Dye-sensitized photopolymerization processes.1a II. A comparison of the photoactivities of thionine and methylene blue, The Journal of Physical Chemistry, vol. 69, pp. 647-656, 1965.
[16]M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism, Journal of the American Chemical Society, vol. 126, pp. 14943-14949, 2004.
[17]Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, 2004.
[18]T. Watanabe, H. Hayashi, and H. Imai, Low-temperature preparation of dye-sensitized solar cells through crystal growth of anatase titania in aqueous solutions, Solar Energy Materials and Solar Cells, vol. 90, pp. 640-648, 2006.
[19]R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner, and W. Hoffmann, A glass frit-sealed dye solar cell module with integrated series connections, Solar Energy Materials and Solar Cells, vol. 90, pp. 1680-1691, 2006.
[20]W. J. Lee, H. Okada, A. Wakahara, and A. Yoshida, Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y, Ceramics International, vol. 32, pp. 495-498, 2006.
[21]M. Matsui, Y. Hashimoto, K. Funabiki, J. Y. Jin, T. Yoshida, and H. Minoura, Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell, Synthetic Metals, vol. 148, pp. 147-153, 2005.
[22]K. Keis, E. Magnusson, H. Lindström, S. E. Lindquist, and A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
[23]S. Ferrere, A. Zaban, and B. A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives, The Journal of Physical Chemistry B, vol. 101, pp. 4490-4493, 1997.
[24]A. Turković and Z. Cmjak Orel, Dye-sensitized solar cell with CeO2 and mixed CeO2SnO2 photoanodes, Solar Energy Materials and Solar Cells, vol. 45, pp. 275-281, 1997.
[25]M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Accounts of Chemical Research, vol. 42, pp. 1788-1798, 2009.
[26]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, The Journal of Physical Chemistry B, vol. 107, pp. 8981-8987, 2003.
[27]C. Pérez León, L. Kador, B. Peng, and M. Thelakkat, Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-vis, Raman, and FTIR spectroscopies, The Journal of Physical Chemistry B, vol. 110, pp. 8723-8730, 2006.
[28]A. Mishra, M. K. R. Fischer, and P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules, Angewandte Chemie International Edition, vol. 48, pp. 2474-2499, 2009.
[29]N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angewandte Chemie International Edition, vol. 45, pp. 2338-2345, 2006.
[30]Y. Liu, A. Hagfeldt, X. R. Xiao, and S. E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Solar Energy Materials and Solar Cells, vol. 55, pp. 267-281, 1998.
[31]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, and H. Arakawa, Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells, Solar Energy Materials and Solar Cells, vol. 70, pp. 151-161, 2001.
[32]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, vol. 570, pp. 257-263, 2004.
[33]A. Kay and M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Materials and Solar Cells, vol. 44, pp. 99-117, 1996.
[34]M. Grätzel, Photoelectrochemical cells, Nature, vol. 414, pp. 338-344, 2001.
[35]J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M. Gratzel, and U. Bach, High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination, Applied Physics Letters, vol. 79, pp. 2085-2087, 2001.
[36]L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Organic dye for highly efficient solid-state dye-sensitized solar cells, Advanced Materials, vol. 17, pp. 813-815, 2005.
[37]F. Cao, G. Oskam, and P. C. Searson, A solid state, dye sensitized photoelectrochemical cell, The Journal of Physical Chemistry, vol. 99, pp. 17071-17073, 1995.
[38]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, The Journal of Physical Chemistry B, vol. 105, pp. 12809-12815, 2001.
[39]T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells, Nano Letters, vol. 2, pp. 1259-1261, 2002.
[40]P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Grätzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, Journal of the American Chemical Society, vol. 125, pp. 1166-1167, 2003.
[41]P. Wang, S. M. Zakeeruddin, and M. Grätzel, Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells, Journal of Fluorine Chemistry, vol. 125, pp. 1241-1245, 2004.
[42]H. W. Han, W. Liu, J. Zhang, and X. Z. Zhao, A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells, Advanced Functional Materials, vol. 15, pp. 1940-1944, 2005.
[43]R. Vogel, P. Hoyer, and H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, The Journal of Physical Chemistry, vol. 98, pp. 3183-3188, 1994.
[44]A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots, Langmuir, vol. 14, pp. 3153-3156, 1998.
[45]R. Plass, S. Pelet, J. Krueger, M. Grätzel, and U. Bach, Quantum dot sensitization of organic-inorganic hybrid solar cells, The Journal of Physical Chemistry B, vol. 106, pp. 7578-7580, 2002.
[46]Y. Tian and T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, Journal of the American Chemical Society, vol. 127, pp. 7632-7637, 2005.
[47]I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, Journal of the American Chemical Society, vol. 128, pp. 2385-2393, 2006.
[48]H. Lee, H. C. Leventis, S. J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nüesch, T. Geiger, S. M. Zakeeruddin, M. Grätzel, and M. K. Nazeeruddin, PbS and CdS quantum dot-sensitized solid-state solar cells: Old concepts, new results, Advanced Functional Materials, vol. 19, pp. 2735-2742, 2009.
[49]Y. Wang and N. Herron, Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry, vol. 95, pp. 525-532, 1991.
[50]R. Rossetti, Size effects in the excited electronic states of small colloidal CdS crystallites, Journal of Chemical Physics, vol. 80, pp. 4464-4469, 1984.
[51]A. J. Nozik, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 115-120, 2002.
[52]W. W. Yu and X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers, Angewandte Chemie International Edition, vol. 41, pp. 2368-2371, 2002.
[53]W. W. Yu, L. Qu, W. Guo, and X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chemistry of Materials, vol. 15, pp. 2854-2860, 2003.
[54]H. Weller, H. M. Schmidt, U. Koch, A. Fojtik, S. Baral, A. Henglein, W. Kunath, K. Weiss, and E. Dieman, Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles, Chemical Physics Letters, vol. 124, pp. 557-560, 1986.
[55]A. J. Nozik, Making the most of photons, Nature Nanotechnology, vol. 4, pp. 548-549, 2009.
[56]A. J. Nozik, Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion, Inorganic Chemistry, vol. 44, pp. 6893-6899, 2005.
[57]V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, Colloidal quantum-dot photodetectors exploiting multiexciton generation, Science, vol. 324, pp. 1542-1544, 2009.
[58]N. C. Greenham, X. Peng, and A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Physical Review B, vol. 54, pp. 17628-17637, 1996.
[59]D. C. Oertel, Photodetectors based on treated CdSe quantum-dot films, Applied Physics Letters, vol. 87, p. 213505, 2005.
[60]G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors, Nature, vol. 442, pp. 180-183, 2006.
[61]J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors, Nature Nanotechnology, vol. 4, pp. 40-44, 2009.
[62]T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nature Photonics, vol. 3, pp. 332-336, 2009.
[63]A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, Depleted-heterojunction colloidal quantum dot solar cells, ACS Nano, vol. 4, pp. 3374-3380, 2010.
[64]J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nature Materials, vol. 10, pp. 765-771, 2011.
[65]X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm, Science, vol. 325, pp. 1665-1667, 2009.
[66]B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares, and J. Durrant, The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements, The Journal of Physical Chemistry B, vol. 109, pp. 4616-4623, 2005.
[67]S. H. Im, J. A. Chang, S. W. Kim, S. W. Kim, and S. I. Seok, Near-infrared photodetection based on PbS colloidal quantum dots/organic hole conductor, Organic Electronics, vol. 11, pp. 696-699, 2010.
[68]P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells, The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006.
[69]B. C. O'Regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit, The Journal of Physical Chemistry C, vol. 111, pp. 14001-14010, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊