跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾昕展
研究生(外文):Hsin-ChanChung
論文名稱:奈米球鏡微影術製備金屬陣列感測器之應用
論文名稱(外文):Fabrication of Metal Array Sensors Using Nanospherical-Lens Lithography
指導教授:張允崇
指導教授(外文):Yun-Chorng Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:奈米球鏡微影術侷域性表面電漿共振折射係數變化感測
外文關鍵詞:Nanospherical-Lens LithographyLSPRLSPR Sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,針對奈米球微影術發展出兩種製作奈米金屬陣列結構的方法,分別為‘‘氧電漿輔助奈米球微影術’’與‘‘奈米球鏡微影術’’。氧電漿輔助奈米球微影術是利用氧電漿蝕刻技術來縮小奈米球遮罩的直徑,增加球體間孔隙的大小,其中蝕刻時間較短的遮罩所形成之三角形陣列,能夠作為表面增強拉曼訊號的應用;而蝕刻時間較長的遮罩所形成之網狀陣列片電阻值低,並且在可見光波段具有高穿透率,能夠作為透明導電層之應用。
奈米球鏡微影術在製程上所耗費的成本不高,利用奈米球作為球透鏡,可以讓入射之UV光源聚焦至光阻上,藉此形成大面積的圓盤陣列。隨著圓盤的尺寸逐漸變小,圓盤陣列的製作難度提高,其中以直徑小於200nm的圓盤陣列尤其不易;然而在本論文中,藉由旋轉斜向蒸鍍製程的加入,已能成功突破製程上的瓶頸,形成小直徑之圓盤陣列,接著再藉由熱退火製程的輔助,則可以讓圓盤直徑變得更小,同時改善圓盤的形狀。目前製作出尺寸最小之圓盤陣列,其直徑約75nm,面積則大於1cm2,對於這些具有週期性的Ag與Au圓盤陣列,能夠作為高靈敏度的環境折射係數變化感測器,並且可以獲得最高之折射係數變化感測指標(figure-of-merit)為8.75。
奈米球鏡微影術的製程中,如果將UV光源替換為紫外線燈源,其曝光強度在不同位置的差異較大,則能夠於基板上形成橢圓盤陣列,橢圓的長短軸比會隨著球透鏡的直徑增加而變大。利用直徑2μm之奈米球作為球透鏡,可以製作出長短軸比接近3的橢圓盤陣列,如果將曝光次數增加為兩次,分別在垂直與水平方向進行曝光,還能夠讓結構形狀由橢圓盤變為十字形陣列。對於製作出來之橢圓盤陣列,製程便宜、快速並且能夠作為紅外光的表面訊號增強吸收光譜之應用。
在本論文中發展之氧電漿輔助奈米球微影術與奈米球鏡微影術可以成功的製作出三角形、圓盤、橢圓盤陣列,這些結構不僅尺寸小、形狀佳,其製程所耗費的成本也不高,製作方便且快速,相信在不久的未來,能夠在工業上找到合適之應用。
In this dissertation, Plasma-Assisted Nanosphere Lithography (PA-NSL) and Nanospherical-Lens Lithography (NLL) are studied. PA-NSL is capable of fabricating nano-triangle arrays, which can be used as an ultrasensitive Surface-Enhanced Raman Scattering (SERS) platform. In addition, PA-NSL can also fabricate continuous Ag nanohole arrays, which exhibit low sheet resistance and acceptable transmission in the visible. The nanohole array is a strong candidate for transparent conducting layer application.
NLL is an economic fabrication technique that is capable of fabricating nanodisk arrays that cover large area. It utilizes polystyrene nanospheres as focusing lenses to focus the incoming ultraviolet light and exposure the underlying photoresist layer. One of the major problems for NLL is that it becomes increasing difficult to fabricate nanodisks with diameter less than 200 nm. In this dissertation, we have studied several key fabrication processes, including rotational oblique-angle deposition and self-perfection using thermal annealing, to reduce the diameter of the fabricated nanodisk arrays. We are able to fabricate nanodisks with diameter as small as 75 nm and the nanodisk arrays cover an area as large as 1 cm2. The periodic Au or Ag nanodisk array is a perfect candidate for ultrasensitive refractive index sensors of the surrounding environment. The highest figure-of-merit, which is a common indicator for the index sensing, is as high as 8.75.
NLL can be also used to fabricate nano-ellipse arrays when the light source is replaced by a commercial ultraviolet lamp. The UV light from the lamp is propagating differently between the directions perpendicular and parallel to the lamp. In this study, we discover that the ratio between the lengths of long axis to the short axis of the fabricated nano-ellipse is related to the diameters of the nanospheres. The large the nanosphere, the ratio becomes higher. By using nanospheres with diameter of 2 μm, the ratio is close to 3 and we were able to fabricate nano-cross arrays by performing an additional exposure after rotating the lamp for 90 degree. This fabricating process is very economic and fast. The nano-ellipse arrays can be used as a platform for surface-enhanced infrared absorption (SEIRA).
In conclusion, we have reported our results in developing PA-NSL and NLL in this dissertation. The fabricated nano-triangle, nanodisk, or nano-ellipse arrays not only can be very small but also demonstrate high quality. In addition, they are also very cost-effective and very fast throughput. We believe they will find applications in several industrial applications in the near future.
中文摘要 I
英文摘要 III
致謝 VI
本文目錄 VII
表目錄 XI
圖目錄 XI
第一章 簡介 1
1-1 研究動機 1
1-2 奈米球自組排列 2
1-2.1 奈米球自組排列機制 2
1-2.2 自組裝奈米球排列裝置 3
1-3 奈米球微影術 4
1-3.1 奈米球微影術 4
1-3.2奈米結構與應用 7
1-4 奈米球鏡微影術 12
1-4.1 奈米球鏡微影術 12
1-4.2奈米結構與應用 16
1-5 表面電漿原理 19
1-5.1 表面電漿與侷域性表面電漿共振 19
1-5.2 奈米金屬粒子之侷域性表面電漿共振 20
1-5.3 侷域性表面電漿共振之感測 23
第二章 實驗儀器與流程 27
2-1 奈米球溶液 27
2-2 奈米球排列裝置 28
2-3 製程儀器 30
2-3.1 電漿蝕刻系統 30
2-3.2 高真空熱蒸鍍機 31
2-3.3 光罩對準儀 32
2-3.4 手提式紫外線燈 33
2-4 量測儀器 34
2-4.1 掃描式電子顯微鏡 34
2-4.2 分光光譜儀 35
2-4.3 顯微拉曼光譜儀 35
2-4.4 四點探針 36
2-5實驗流程 37
2.5-1 奈米金屬三角形及網狀陣列結構製程 37
2.5-2 奈米金屬圓盤及橢圓盤陣列結構製程 38
第三章 奈米球微影術 41
3-1 氧電漿輔助奈米球微影術 41
3-1.1 介面活性劑對奈米球排列之影響 41
3-1.2 奈米球球徑與氧電漿蝕刻時間之關係 42
3-1.3 奈米金屬陣列結構與氧電漿蝕刻時間之關係 44
3-1.4 不同氧電漿蝕刻時間之金屬三角形陣列結構 45
3-1.5 不同氧電漿蝕刻時間之金屬網狀陣列結構 46
3-2 奈米金屬陣列結構之應用 48
3-2.1 金屬三角形陣列結構表面增強拉曼訊號之應用 48
3-2.2 金屬網狀陣列結構光電特性之分析 49
3-3 氬電漿輔助奈米球微影術 51
3-3.1 氬電漿蝕刻製程之架構 51
3-3.2 氬電漿蝕刻製備奈米金屬陣列結構 51
3-3.3 金屬圓盤陣列結構之LSPR頻譜 55
第四章 奈米球鏡微影術 58
4-1 奈米球鏡微影術 58
4-1.1 奈米球透鏡聚焦UV光之模擬 58
4-1.2 微影製程參數對於奈米光阻洞陣列之影響 59
4-1.3 金屬圓盤陣列結構之LSPR感測 62
4-1.4 金屬圓盤陣列結構LSPR感測之模擬 64
4-2 斜向蒸鍍製程 65
4-2.1 斜向蒸鍍製程之架構 65
4-2.2 斜向蒸鍍製程於光阻橢圓洞陣列之應用 66
4-2.3 斜向蒸鍍製程於光阻圓洞陣列之應用 70
4-3 小直徑之金屬圓盤陣列結構LSPR感測 73
4-3.1 Ag圓盤陣列結構之LSPR感測 73
4-3.2金屬圓盤陣列結構之熱退火製程 75
4-3.3 Au圓盤陣列結構之LSPR感測 76
4-3.4 蒸鍍厚度與熱退火時間的變化對FoM之影響 79
4-3.5 熱退火溫度的變化對FoM之影響 83
4-4 非平行UV光源之奈米球鏡微影術 86
4-4.1 不同長短軸比之奈米光阻橢圓洞陣列 86
4.4.2 奈米金屬橢圓盤與十字形陣列結構 88
第五章 結論 92
5-1 奈米球微影術 92
5-2 奈米球鏡微影術 94
5-3未來展望 96
參考文獻 98
[1] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayamat, Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir, Vol. 8, No. 12, 3183-3190, 1992.
[2] Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne, Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy, Langmuir, Vol. 20, No. 16, 6927-6931, 2004.
[3] Arseniy I. Kuznetsov, Andrey B. Evlyukhin, Manuel R. Gonc-alves, Carsten Reinhardt, Anastasia Koroleva, Maria Luisa Arnedillo, Roman Kiyan, Othmar Marti, Boris N. Chichkov, Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications, ACS Nano, Vol. 5, No. 6, 4843-4849, 2011.
[4] Ludovic S. Live, Olivier R. Bolduc, Jean-Francois Masson, Propagating Surface Plasmon Resonance on Microhole Arrays, Analytical Chemistry, Vol. 82, No. 9, 3780-3787, 2010.
[5] Yeonho Choi, Soongweon Hong, and Luke P. Lee, Shadow Overlap Ion-beam Lithography for Nanoarchitectures, Nano Letters, Vol. 9, No. 11, 3726-3731, 2009.
[6] 張高德, 欒丕綱, 光子晶體簡介, 光學工程, 95期, 2006.
[7] 楊志忠, 新世紀奈米級光電材料結構—光子晶體, 物理雙月刊, 6期, 2001.
[8] 張高德, 欒丕綱, 光子晶體中的波傳播, 物理雙月刊, 5期, 2006.
[9] Jason P. Schmidt, Sarah E. Cross, and Steven K. Buratto, Surface-enhanced Raman scattering from ordered Ag nanocluster arrays, Journal of Chemical Physics, Vol. 121, No. 21, 2004.
[10] Thomas H. Reilly III, Robert C. Tenent, Teresa M. Barnes, Kathy L. Rowlen, and Jao van de Lagemaat, Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films, ACS Nano, Vol. 4, No. 2, 615-624, 2010.
[11] Wei Wu, Dibyendu Dey, Omer G. Memis, Alex Katsnelson, Hooman Mohseni, A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars, Nanoscale Res Lett, 3, 123-127, 2008.
[12] Jong-Bin Yeo, Hyun-Yong Lee, Realization of multi-paired photonic crystals by the multiple-exposure nanosphere lithography process, Scripta Materialia, 66, 311-314, 2012.
[13] Kohei Imura, Kosei Ueno, Hiroaki Misawa, Hiromi Okamoto, Anomalous Light Transmission from Plasmonic-Capped Nanoapertures, Nano Letters, 11, 960-965, 2011.
[14] Martin Kuttge, F. Javier Garcı´a de Abajo, Albert Polman, Ultrasmall Mode Volume Plasmonic Nanodisk Resonators, Nano Letters, 10, 1537-1541, 2010.
[15] 吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊, 2期, 2006.
[16] 邱國斌, 蔡定平, 金屬表面電漿簡介, 物理雙月刊, 2期, 2006.
[17] 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作, 物理雙月刊, 2期, 2010.
[18] Peter Offermans, Martijn C. Schaafsma, Said R. K. Rodriguez, Yichen Zhang, Mercedes Crego-Calama, Sywert H. Brongersma, Jaime Gomez Rivas, Universal Scaling of the Figure of Merit of Plasmonic Sensors, ACS Nano, Vol. 5, No. 6, 5151-5157, 2011.
[19] Leif J. Sherry, Rongchao Jin, Chad A. Mirkin, George C. Schatz, Richard P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms, Nano Letters, Vol. 6, No. 9, 2060-2065, 2006.
[20] Rostislav Bukasov, Jennifer S. Shumaker-Parry, Highly Tunable Infrared Extinction Properties of Gold Nanocrescents, Nano Letters, Vol. 7, No. 5, 2007.
[21] Kathryn M. Mayer, Seunghyun Lee, Hongwei Liao, Betty C. Rostro, Amaris Fuentes, Peter T. Scully, Colleen L. Nehl, Jason H. Hafner, A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods, ACS Nano, Vol. 2, No. 4, 687-692, 2008.
[22] Mikael Svedendahl, Si Chen, Alexandre Dmitriev, Mikael Kall, Refractometric Sensing Using Propagating versus Localized Surface Plasmons: A Direct Comparison, Nano Letters, Vol. 9, No. 12, 4428-4433, 2009.
[23] J. Britt Lassiter, Heidar Sobhani, Jonathan A. Fan, Janardan Kundu, Federico Capasso, Peter Nordlander, Naomi J. Halas, Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability, Nano Letters, Vol. 10, 3184-3189, 2010.
[24] Su Yeon Lee, Se-Heon Kim, Se Gyu Jang, Chul-Joon Heo, Jae Won Shim, Seung-Man Yang, High-Fidelity Optofluidic On-Chip Sensors Using Well-Defined Gold Nanowell Crystals, Analytical Chemistry , Vol. 83, 9174-9180, 2011.
[25] Niels Verellen, Pol Van Dorpe, Chengjun Huang, Kristof Lodewijks, Guy A. E. Vandenbosch, Liesbet Lagae, Victor V. Moshchalkov, Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing, Nano Letters, Vol. 11, 391-397, 2011.
[26] 曾重賓, 氧電漿輔助奈米球微影術之研究與應用, 國立成功大學, 碩士論文, 2010.
[27] 國立成功大學微奈米科技研究中心, 高解析熱電子型場發射掃描式電子顯微鏡儀器操作手冊.
[28] 國科會精密儀器中心, 奈米檢測技術, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top