( 您好!臺灣時間:2022/09/28 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Study of the mechanism of charge accumulation in organic nonvolatile memories
指導教授(外文):Wei-Yang Chou
外文關鍵詞:NN’-dioctadecy1-34910-perylenetetracarboxylicorganic non-volatile memorytrapping layer
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究共分為兩個主題,主題一利用兩種不同的結構:單層載子捕捉層Ps、C-pvp與同時具有修飾層與載子捕捉層雙層結構的PS + PS、C-PVP + PαMS、PS +PMMA,藉由上述兩種不同結構來控制記憶窗口變化,其中以C-PVP + PαMS可以得到最大的記憶窗口與元件穩定性,另外在製作有機反向器時雖然C-PVP+ PαMS有最大的記憶窗口但卻因p型電流較小使得n、p型電流無法匹配,導致Vs較無法得到Vs = 1/2 VDD,反倒是記憶窗口較小的PS + PS比較匹配,較適合作為反相器。

Pentacene and N,N’-dioctadecy1-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13H27) are used as active layers to fabricate organic non-volatile memory devices with various types of charge trapping layer. Several types of semiconductor film are used to determine the impact of surface morphology and electrical properties.

In the first part, a single-layer structure that has a trapping layer, Polystyrene (Ps), and cross-linked poly (4-vinylphenol) (C-PVP) and a double-layer structure that has a modification layer and a trapping layer, PS + PS, C-PVP + Poly (a-methylstyrene) (PαMS), and PS + polymethylmethac- 0.rylate (PMMA) are used. The memory window of the double–layer structure is much larger than that of the single-layer structure. C-PVP + PαMS provides the largest memory window and the best stability.

In the second part, three types of polyimide, namely DA7013, DA9000, and DA9000A, are used as a trapping layer to fabricate non-volatile memory devices. The main structures of DA9000 and DA9000A are the same, but DA9000A does not have a side chain and thus lacks the ability to capture carriers. DA9000A is thus unsuitable for a memory device. The opposite is true for DA9000. DA7013 exhibits an excellent n-type memory feature and durability.

第一章 緒論.....1
1-1 非揮發記憶體簡介............1
1-1-3 SONOS結構非揮發記憶體.....2
1-3 研究動機....................5
第二章 有機薄膜電晶體與記憶元件原理.....8
2-7 有機非揮發式記憶體元件操作原理......11
2-7-3 耐久度....12
第三章 載子捕捉層對有機非揮發式記憶元件影響....19
3-3 元件製程....21
3-4 分析儀器介紹.23
3-5-3 X-Ray繞射分析..25
3-7 OCMOS轉移曲線........29
第四章 聚亞醯胺應用於有機記憶體元件...54
4-3 元件製程....55
4-5-3 X-Ray繞射分析...58
4-7 OCMOS轉移曲線.......61
第五章 結論.....89

[1] D. Kahng, and S. M Sze, “A floating gate and its application tomemory devices, IEEE Trans. Electron Devices, 14, 629, 1967.
[2] S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, “Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers, Appl. Phys. Lett., 96, 033302, 2010.
[3] S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovi´c, “Performance comparison of different organic molecular floating-gate memories, IEEE Trans. on Nanotechnology, 10, 594, 2011.
[4] J. D. Blauwe, “Nanocrystal nonvolatile memory fevices, IEEE Trans. on Nanotechnology, 1, 72, 2002.
[5] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, “A novel nanowire channel poly-si tft functioning as transistor and nonvolatile sonos memory, IEEE Electron Device Lett., 28, 809, 2007.
[6] N. Wang, L. Zhu, D. Wanga, M. Wanga, Z. Lin , H. Tang, “Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nano- particles for catalytic removal of organic pollutants with H2O2, Ultra- sonics Sonochemistry, 17, 526, 2010.
[7] M. H. White, D. A. Adams, and J. Bu, “On the go with sonos, Circuits and Devices Magazine, IEEE, 16, 22, 2000.
[8] J. Bu, and M. H. White, “Effects of two-step high temperature deuterium annealson sonos nonvolatile memory devices, IEEE Electron Device Lett., 22, 17, 2001.
[9] P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King, “FinFET sonos flash memory for embedded applications, IEDM Tech. Dig., 609, 2003.
[10] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. B. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Y. Lu, “MA Be-sonos: A bandgap engineered sonos using metal gate and Al2O3 blocking layer to overcome erase saturation, IEEE, 88, 2007.
[11] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part I: device design and fabrication, IEEE Trans. on Electron Devices, 49, 1606, 2002.
[12] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices, Appl. Phys. Lett., 79, 433, 2001.
[13] B. Eitan, P pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “Nrom: A novel localized trapping, 2-bit non-volatile memory cell, IEEE Electron Device Lett., 21, 543, 2000.
[14] J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices, IEEE Trans. on Nanotechnology, 1, 72, 2002.
[15] K. Das, M. N. Goswami, R. Mahapatra, G. S. Kar, H. N. Acharya, S.
Maikap, J. H. Lee, S. K. Ray, “Charge storage and photoluminescence characteristics of silicon oxide embedded Ge nanocrystal trilayer structures, Appl. Phys. Lett., 84, 1386, 2004.
[16] T. H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “Design optimization of metal nanocrystal memory-Part I: nanocrystal array engineering, IEEE Trans. Electron Devices, 53, 3095, 2006.
[17] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots, IEEE trans. Electron Devices, 49, 1392, 2002.
[18] S. Choi, S. Sl. Kim, M. Chang, H. Hwang, S. Jeon, C Kim, “Highly thermally stable TiN nanocrystals as charge trapping sites for non-volatile memory device applications, Appl. Phys. Lett., 86, 123110, 2005.
[19] J. J. Lee, and D. L. Kwong, “Metal nano-crystal memory with high-k tunneling barrier for imporved data retention, IEEE Trans. Electron Devices, 52, 507, 2005.
[20] T. Y. Kim, N. M. Park, K. H. Kim, and G. Y. Sung, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films, Appl. Phys. Lett., 85, 5355 , 2004.
[21] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “Synthesisand characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices , Appl. Phys. Lett., 79, 433, 2001.
[22] R. Waser, “Resistive non-volatile memory devices, Microelectronic Engineering, 86, 1925, 2009.
[23] X. Liu, Z. Ji, Deyu Tu, L. Shang, J. Liu, M. Liu, C. Xie, “Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene- dioxythiophene): Polystyrenesulfonate thin film, Organic Electronics, 10, 1191, 2009.
[24] M. Cölle, M. Büchel, D. M. de Leeuw, “Switching and filamentary conduction in non-volatile organic memories, Organic Electronics, 7, 305, 2006.
[25] S. H. Kim, S. H. Lee, and J. Jang, “High-performance n-channel organic thin-film transistor for cmos circuits using electron-donating self- assembled layer, IEEE Electron Device Lett., 31, 1044, 2010.
[26] J. H. Park, D. H. Lee, H. Kong, M. J. Park, I. H. Jung, C. E. Park, H. K. Shim, “Organic thin-film transistor properties and the structural relationships between various aromatic end-capped triisopropyl- silylethynyl anthracene derivatives, Organic Electronics, 11, 820, 2010.
[27] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density and fill factor in polymer solar cells, Adv. Mater., 23, 4636, 2011.
[28] L. Dou, J. You1, J. Yang, C. C. Chen, Y. He, S. Murase,T. Moriarty, K. Emery, G. Li, and Y.Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nature Photonics, 6, 180, 2012.
[29] C. H. Chang, H. C. Cheng, Yi. J. Lu, K. C. Tien, H. W. Lin, C. L. Lin, C. J. Yang, C. C. Wu, “Enhancing color gamut of white OLED displays by
using microcavity green pixels, Organic Electronics, 11, 247, 2010.
[30] H. K. Kim, S. H. Cho, J. R. Oh, Y. H. Lee, J. H. Lee, J. G. Lee, S. K. Kim, Young-Il Park, J. W. Park, Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes, Organic Electronics, 11, 137, 2010.
[31] L. P. MA, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells, Appl. Phys. Lett., 80, 2997, 2002.
[32] J. Oyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device, Nat. Mater., 3, 918, 2004.
[33] S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulović, “Bulovic performance comparison of different organic molecular floating gate memories, IEEE Trans. on Nanotechnology, 10, 594, 2011.
[34] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, “Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory, Adv. Func. Mater., 18, 3678, 2008.
[35] L. Zhen, W. Guan, L. Shang, M. Liu, and G. Liu, “Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric, Journal of Physics D: App. Phys., 41, 135111, 2008.
[36] W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, “Non-volatile organic memory applications enabled by In situ synthesis of gold nanoparticles in a self-assembled block copolymer, Adv. Mater., 20, 2325, 2008.
[37] S. Wang, C. W. Leung, P. K. L. Chan, “Enhanced memory effect in organic transistor by embedded silver nanoparticles, Organic Electronics, 11, 990, 2010.
[38] M. F. Mabrook, Y. Yun, C. Pearson, D. A. Zeze and M. C. Petty, “A pentacene-based organic thin film memory transistor, Appl. Phys. Lett., 94, 173302, 2009.
[39] B. L Yeh, Y H. Chen, L. Y. Chiu, J. W. Lin, W. Y. Chen, J. S.Chen, T. H. Chou, W. Y. Chou, F. C. Tang and, H. L. Cheng, “Organic nonvolatile memory based on low voltage organic thin film transistors with polymer gate electrets, Journal of The Electrochemical Society, 158, 277, 2011.
[40] L. Shang, Z. Ji, H. Wang, Y. Chen, X. Liu, M. Han, and M. Liu, “Low-voltage multilevel memory based on organic thin-film transistor, IEEE Electron Device Lett., 32, 1451, 2011.
[41] K. H. Lee, G. Lee, K. Lee, M. S. Oh, and Seongil Im, “Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer, App. Phys. Lett., 94, 093304, 2009.
[42] R. C. Naber, B. de Boer, P. W. Blom, and D. M. de Leeuw, “Low -voltage polymer field-effect transistors for nonvolatile memories, Appl. Phys. Lett., 87, 203509 , 2005.
[43] K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center, Organic Electronics, 10, 48, 2009.
[44] S. J. Kim, and J. S. Lee, “Flexible organic transistor memory devices, NANO Letters, 10, 2884, 2010.
[45] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-κ dielectric layers, Appl. Phys. Lett., 93, 233302, 2008.
[46] L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. Hhung Chan, E. T. Kang, K. G. Neoh, “A flexible polymer memory device, Organic Elec- tronics, 8, 401, 2007.
[47] S. J. Kim, J. M. Song, and J. S. Lee, “Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates, J. Mater. Chem., 21, 14516, 2011.
[48] Y. S. Park, S. Chung, S. J. Kim, S. H. Lyu, J. W. Jang, S. K. Kwon, Y. Hong, and J. S. Lee, “High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis, triisopropylsilylethynyl pentacene transistors, Appl. Phys. Lett., 96, 213107 , 2010.
[49] K. A. Mohamad, K. Yousuke, K. Uesugi and, H. Fukuda, “n-channel organic thin-film transistors based on naphthalene–Bis(dicarboximide) polymer for organic transistor memory using hole-acceptor layer, Jpn. J. Appl. Phys., 50, 091603, 2011.
[50] S. M. Wang, C. W. Leung, and P. K. L. Chan, “Nonvolatile organic transistor-memory devices using various thicknesses of silver nanoparticle layers, Appl. Phys. Lett., 97, 023511, 2010.
[51] X. C. Ren, S. M. Wang, C. W. Leung, F. Yan, and, P. K. L. Chan, “Thermal annealing and temperature dependences of memory effect in organic memory transistor, Appl. Phys. Lett., 99, 043303, 2011.
[52] W. Y. Chou , B. L. Yeh, H. L. Cheng, B. Y. Sun, Y. C. Cheng, Y. S. Lin, S. J. Liu, F. C. Tang, C. C. Chang, “Organic complementary inverters with polyimide films as the surface modification of dielectrics, Organic Electronics, 10, 1001, 2009.
[53] 蔡維勛,高分子聚合物於有機互補式場效電晶體的應用,國立成功大學碩士論文(2011)

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top