跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/23 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博翔
研究生(外文):Po-HsiangChang
論文名稱:奈米裂縫微影術應用於光電元件之製造
論文名稱(外文):Fabrication of Optoelectronic Device using Nano-Crack Lithography
指導教授:張允崇
指導教授(外文):Yun-Chung Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:奈米裂縫微影術奈米線奈米光電元件
外文關鍵詞:Nano-Crack LithographyNanowireNanoscale Optoelectronic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究是使用「奈米裂縫微影術」製作奈米尺度的光電元件。當蝴蝶結形狀的光阻當受熱應力時,很直觀地,會沿腰身方向產生裂縫。而裂開的縫隙非常窄,長度可延伸幾微米長。因此,微米尺寸的光阻圖案可用於製作奈米線。由於奈米線的位置是可以預期的,所以奈米線可以連接到各種製作。換句話說,可以預期奈米線的位置,使我們能夠輕易的使用光罩以利後續的製程。這是奈米裂縫微影術相較於其他奈米線製成的優勢。除此之外,奈米裂縫微影術是非常符合經濟效益,因為只需普通的黃光微影技術就可達成。
將上述的「奈米裂縫微影術」用來製作三五族氮化物的LED。鉻奈米金屬線可由奈米裂縫微影術製作出來,將鉻當作蝕刻SiO2的阻擋層,再蝕刻LED以SiO2當作阻擋層就可完成奈米線LED。 也用AZ-400K顯影劑作選擇性濕蝕刻,以進一步減少奈米線寬。製作出的奈米線LED從光學和電學特性顯示出良好的結構性質。雖然n-GaN的電極很容易製作,但是製作p-GaN的電極不是件簡單的事。我們必須考慮其他方式,像是選擇性溶解PMMA,幫助我們製作p-GaN電極。我們相信製作出來的LED很快就能表現出二極體特性。
此外,「奈米裂縫微影術」也用於製作奈米線的AlGaN / GaN高電子遷移率晶體體(HEMT)。其製作過程與奈米線LED非常相似。製作出奈米線HEMT元件的電阻在2kΩ的範圍。當奈米線浸泡不同pH值的液體時,電阻會隨著pH值上升而增加。靈敏度為0.06%/ pH值,比文獻資料中大面積的HEMT相比,這值是非常低。我們相信不久之後,改善元件的參數及結構,靈敏度可明顯提升。
總之,我們已經使用「奈米裂縫微影術」製作奈米線LED和HEMT。與大面積的元件相比,效能不是太高。為了使這些元件能夠應用於業界,顯著的改善是必要的。相信目前這些做出的奈米元件雛型可以開啟未來製作一維奈米光電元件的入口。
In this dissertation, nanoscale optoelectronic devices are fabricated using Nano-Crack Lithography (NCL). It is well known that thermal cracking of a bowtie photoresist pattern will form along the neck direction. The cracking line is very narrow and extends several microns long. Therefore, the micro-scale photoresist pattern can be used to fabricate nanowires. Since the location of nanowire is pre-determined, it is very easy to fabricate connection to the nanowires using NCL. The pre-determined nanowire’s location allows us to align the subsequent photomasks for additional fabrication processes. This is the major advantage for NCL compared to other nanofabrication processes. In addition, NCL is very cost-effective since only conventional photolithography processes are used.
NCL is used to fabricate III-V nitrides light-emitting diodes (LEDs). Cr nanowires patterned by NCL are used as etch mask for the following dry etching of the underlying SiO2 and LED structures. AZ-400K developer is also used as a selective wet etchant to further reduce the linewidth. The fabricated nanowire LED demonstrates good structural qualities with adequate optical and electrical properties. Although it is easy to fabricate contact to the n-GaN, fabricating the p-GaN contact is not an easy job. We have to incorporate an additional process that can selective dissolve PMMA layer to help us fabricate p-GaN contacts. We believe the fabricate LED can demonstrates diode characteristics very soon.
In addition, NCL is used to fabricate nanowire AlGaN/GaN high-electron-mobility transistors (HEMTs). The fabrication procedures are very similar to the nanowire LEDs. The resistance of the fabricated nanowire HEMTs is in the ranges of 2000Ω. By immersion the nanowire into liquid with different pH value, the resistance increases as the pH value increases. The sensitivity is about 0.06%/pH, which is very low compared to the broad-area devices reported in the literatures. We believe by further optimizing the device structure and the fabricating quality, the sensitivity can be significant improved in the near future.
In conclusion, we have demonstrated fabrications of nanowire LEDs and HEMTs using NCL. The fabricated devices are not very efficient compared to the broad-area devices. Significant optimizations are necessary in order to make these devices applicable in the industry. However, we believe these proto-type devices serves as stepping stones for one-dimensional nanoscale optoelectronic devices in the future.

摘要i
Abstractiii
致謝v
目錄vi
圖目錄ix
第一章 簡介1
1-1研究動機1
1-2奈米線製程2
1-2.1Lithographically patterned Nanowire electrodeposition2
1-2.2Metallic Nanowires by Full Wafer Stencil Lithography2
1-3.3Thin-film-fracture-based Nanowire4
1-3 奈米線LED5
1-3.1奈米線LED特性5
1-3.2濕蝕刻LED7
1-3.3選擇性溶解9
1-3.4 LED電性分析9
1-4 HEMT10
1-4.1 HEMT原理10
1-4.2 HEMT感測應用13
1-4斜向蒸鍍14
1-4.1斜向蒸鍍原理14
1-4.2奈米棒陣列薄膜特性16
1-4.3孔隙度及沉積速率理論分析18
1-4.4蒸鍍角及柱狀角的理論分析20
1-4.5侷域性表面電漿共振(Localized Surface Plasmon Resonance)21
1-5雞蛋白薄膜特性25
1-6結論26
第二章 實驗儀器與元件製作流程28
2-1 製程儀器28
2-1.1 黃光微影製程28
2-1.2 電漿蝕刻機29
2-1.3 熱蒸鍍機31
2-1.4 電子束蒸鍍機31
2-1.5 感應耦合型電漿31
2-2 量測儀器34
2-2.1 表面粗度儀34
2-2.2 掃描式電子顯微鏡35
2-2.3 分光光譜儀35
2-3 結構製程36
2-3.1 奈米裂縫製程36
2-3.2 斜向蒸鍍製程37
2-3.3 雞蛋白薄膜製作38
第三章 奈米線LED和HEMT製程41
3-1 LED結構42
3-1.1 Etching method流程42
3-1.2 Etching method實驗結果43
3-2.1 Re-growth method流程44
3-2.2 Re-growth method實驗結果45
3-3濕蝕刻46
3-3.1濕蝕刻奈米柱LED46
3-3.1濕蝕刻奈米線LED48
3-4奈米線LED電極51
3-4.1奈米線LED電極流程51
3-4.2實驗結果52
3-5HEMT結構56
3-5.1製作奈米線HEMT56
3-5.2實驗結果57
3-6總結58
第四章 奈米線LED和HEMT分析59
4-1奈米線LED分析59
4-1.1 CL分析59
4-1.2 PL分析61
4-1.2電性分析63
4-2奈米線HEMT分析67
第五章 結論及未來展望72
附錄A 斜向蒸鍍分析及討論74
A-1 沉積速率分析74
A-2 柱狀角分析74
A-3 折射率分析77
A-4結論83
附錄B奈米金溶液混雞蛋白分析及討論84
B-1不同濃度奈米金溶液實驗85
B-2不同濃度奈米金溶液混雞蛋白實驗87
B-3不同濃度奈米金溶液混PVA實驗92
B-4不同濃度奈米金溶液混雞蛋白在金薄膜基板實驗95
B-5結論95
參考資料97


[1] E. J. MENKE, M. A. THOMPSON, C. XIANG, L. C. YANG AND R. M. PENNER, nature materials, 2006 Vol.5, p914-919.
[2] O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M. A. F. van den Boogaart, and J. Brugger, Nano LetT., 2008 Vol.8, No.11 p3675-3682.
[3] Seid Jebril, Rainer Adelung,Small, 2008, 4, N0. 12, p2214-2221.
[4] M.L. Kuo, Y.S. Kim, Mei-Li Hsieh and Shawn-Yu Lin, Nano lett. 2011, 11, pp. 476-481.
[5] Yu-Jung Lu, Hon-Way Lin, Hung-Ying Chen, and Yu-Chen Yang, Shangjr Gwo, APPLIED PHYSICS LETTERS, 98, 233101, 2011.
[6] Qiming Li, Karl R. Westlake, Mary H. Crawford, Stephen R. Lee, Daniel D. Koleske, Jeffery J. Figiel, Karen C. Cross, Saeed Fathololoumi, Zetian Mi, and George T. Wang, Optics Express, Vol. 19, Issue 25, pp. 25528-25534 (2011).
[7] Huijuan Zhang, Chee-Leong Wong, Yufeng Hao,b Rui Wang, Xiaogang Liu,ad Francesco Stellacciaeand John T. L. Thong, Nanoscale, vol. 2, p 2302, 2010.
[8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman , Appl. Phys., Vol. 85, No. 6, 15 March 1999
[9]張育榮,場效電板氮化鋁鎵/氮化鎵高電子移導率電晶體之製作與應用,碩士論文,2006
[10] B. S. Kang, H. T. Wang, and F. Ren, Appl. Phys. Lett. 91,(2007)
[11] J Teubert1, P Becker1, F Furtmayr and M Eickhoff, Nanotechnology, 22 (2011)
[12] Jeppe Mørch Nørgaard, Nina Brodam Lorentzen,
René Petersen, and Morten Vesterager Madsen, Growth of Nanostructures by Glancing Angle Deposition.
[13] J.-Q. Xi, Jong Kyu Kim, Schubert EF., Nano lett. 2005, Vol. 5, No. 7, pp. 1385-1387.
[14] J. C. Sit, D. Vick, K. Robbie and M. J. Brett, Journal of Materials Research, vol. 14, 1999, pp. 1197-1199.
[15] J.-Q. Xi, Jong Kyu Kim, Schubert EF., Nano Lett., Vol. 5 , 2005 , pp. 1385 -1387.
[16] J.-Q. Xi, M.F. Schubert, Jong Kyu Kim, E.F. Schubert, Minfeng Chen, Shawn-Yu Lin, W. Liu and J.A. Smart, vol.1, pp. 176, 2007.
[17]D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. Vol 93, 101914 (2008).
[18] Nieuwenhuizen, J. M. and Haanstra, H. B., Philips Technical Review, Vol. 27, pp. 87-91, 1966.
[19] R. N. Tait, T. Smy, and M. J. Brett, Thin Solid Films 226, 196-201 (1993).
[20] 曾賢德,物理雙月刊,32卷,2期
[21] S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).
[22] Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B. 107,668 (2003).
[23] P. K. Jain and M. A. El-Sayed, Nano Letters, 8, 4347-4352, 2008.
[24] W. J. Stadelman, O. J. Cotterill, Egg science and technology, Haworth Press Inc ., Binghamton, NY 1995 , pp. 120 .
[25] J. A. Huntington, P. E. Stein, J. Chromatogr. B 2001, 756, 189.
[26] M. Sela, S. Lifson, Biochim. Biophys. Acta 1959, 36, 471.
[27] W. Dariusz, Synthesis 2008, 16, 2491.
[28] J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, T.-C.
[29]Hong xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 6, ISBN 0130224049
[30]Hong xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 7, ISBN 0130224049
[31]張勁燕, 半導體製程設備, 第8章, 978-957-11-5250-9
[32]Goldstein, Joseph I., Scanning Electron Microscopy and X-Ray Microanalysis, ISBN 0306472929
[33]Eugene hecht, OPTICS, p-120 ,ISBN 0321188780
[34] E. Fred Schubert, Light-Emitting Diodes, Cambridge University Press
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top