跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭凌伶
研究生(外文):Ling-LingKuo
論文名稱:可撓式n型有機薄膜電晶體於光偵測器之應用
論文名稱(外文):Flexible n-type organic thin-film transistors applied in photosensors
指導教授:周維揚周維揚引用關係
指導教授(外文):Wei-Yang Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:132
中文關鍵詞:可撓式有機薄膜電晶體烷基駢苯衍生物光感應器
外文關鍵詞:flexible organic thin-film transistorsperylenephotosensors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究使用自行合成十三烷基駢苯衍生物N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27)作為半導體材料,使用indium tin oxide (ITO)玻璃基板及polyether sulfone (PES)軟性基板製作成有機薄膜電晶體元件,觀察元件在不同彎曲曲率下的電特性變化及其在光感應器的應用。
本研究分為兩部分,第一部分改變元件高分子絕緣層參數,以不同交聯聚4-乙基苯酚(Cross-Linked poly(4-vinylphenol), C-PVP)濃度及不同塗佈旋轉轉速觀察元件之電特性變化,其中以poly(4-vinylphenol) (PVP)及poly(melamine-co-formaldehude) (PMF)濃度為12:4 wt%之C-PVP以塗佈旋轉速度為初轉10 s 500 r.p.m.、末轉30s 3000 r.p.m.的參數最為適合作為元件之介電層。此外,為了進一步改善元件電特性,將氟化鋰成膜於半導體層及電極層之間作為修飾層,加入修飾層後不僅能夠提升元件開電流並降低關電流,使元件開關電流比值提高,且飽和電流與載子遷移率也有明顯提升的趨勢。本實驗另研究元件經由彎曲後的電特性變化,經由實驗發現有機薄膜電晶體經由向內壓縮後,半導體層內的分子與分子之間的距離變近使分子間作用力增加因而減少載子傳遞能量損耗,因此,向內壓縮曲率增加時元件飽和電流增加、臨界電壓愈小;相反地,有機薄膜電晶體經由向外伸展後,半導體層內的分子與分子之間的距離變遠使分子間作用力減少因而增加載子傳遞能量損耗,因此,向外壓縮曲率增加時元件飽和電流降低、臨界電壓愈大。由半導體層的光激螢光光譜可發現元件經由向內壓縮後有紅位移現象,向外伸展後有藍位移現象,由此結果可證明當半導體層向內彎曲時,分子距離靠近,反之分子距離遠離。由半導體層的時間解析光激螢光分析可得向內壓縮載子生命期較長,向外伸展載子生命期較短,此結果與光激螢光光譜及元件彎曲量測結果一致。
第二部分將本研究第一部分的有機薄膜電晶體元件作光偵測器之應用並觀察元件在不同光照度及不同電壓下操作的結果,由於場效電流隨著操作電壓愈小而變小,因此操作電壓愈小時光電流貢獻愈大使光響應力大幅增加;本研究改變照光強度可發現隨著照光強度愈大、光電流愈明顯,由於照光使半導體層內載子激發產生電子電洞對,因此照光強度愈強愈能激發半導體層內的載子而產生愈多光電流。
本研究將薄膜電晶體製作在PES軟性基板上做光感應器之應用,實現在2.5V低電壓下可達到一百的光響應能力。
N,N’-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13H27) is synthesized and applied as the active layer in organic thin-film transistors (OTFTs) that were fabricated on indium tin oxide (ITO) glass substrates and polyether sulfone (PES) flexible substrates. The electrical properties of OTFTs and its application in photosensors were investigated under bending conditions.
This study is divided into two parts. In the first part, we demonstrated the different cross-linked poly(4-vinylphenol) (C-PVP) parameters, including concentration and thickness, spun on the insulator layers. The best results are achieved with C-PVP film with a weight concentration ratio of poly(4-vinylphenol) (PVP) to poly(melamine-co-formaldehude) (PMF) of 12:4 spun for 10 s at 500 rpm and then for 30 s at 3000 rpm. LiF is used as the buffer layer between semiconductor layers and electrode layers to improve electric performance. High on/off current ratios and saturation current, as well as excellent carrier mobility are obtained. As the flexible devices were compressed, the distance between PTCDI-C13H27 molecules was decreased to result in increase of the interaction force between molecules and decrease of the reorganization energy for carrier transportation. The saturation current gradually increased and the threshold voltage decreased with increasing substrate curvature. A photoluminescence analysis shows a slight red shift after device compression and a blue shift after device extension. Time-resolved photoluminescence analysis reveals that the compressed devices have a longer exciton lifetime.
In the second part, it was observed that the photoresponse significantly increased with decreasing applied voltage including gate and drain voltages. According to the lower effect field current under the lower operated voltage, the photocurrent became the dominate contribution. When n-type OTFTs were operated at a low voltage of 12 V, the photoresponse approaches 100 at 2.5 V for the flexible devices, making them suitable as photosensors.
中文摘要 i
Abstract iii
誌謝 v
目次 vi
表目錄 x
圖目錄 xiii
第一章 簡介 1
1.1 有機半導體簡介 1
1.2 研究動機 3
第二章 原理 5
2.1 有機薄膜電晶體的基本構造 5
2.2 有機半導體的載子傳輸機制 6
2.3 有機薄膜電晶體的操作原理 7
2.3.1 有機薄膜電晶體的操作原理 7
2.3.2 有機薄膜電晶體的基本公式及特性 8
第三章 烷基駢苯衍生物材料合成與有機薄膜電晶體的 製程及分析18
3.1 前言 18
3.2 有機化合物合成技術、高分子介電層配製 19
3.2.1 實驗儀器及藥品 19
3.2.2 有機化合物合成技術 20
3.2.3 高分子介電層配置 21
3.3 有機薄膜電晶體的製程 22
3.3.1 基板清洗步驟 22
3.3.2 介電層製程 23
3.3.3 物理氣相沉積蒸鍍及製程 24
3.4 有機薄膜電晶體的量測、分析 26
3.4.1 電性量測 26
3.4.2 不同曲率半徑之電性量測 27
3.4.3 照光之電性量測 28
3.4.4 光激螢光光譜系統 (Photoluminescence, PL) 29
3.4.5 時間解析光激螢光光譜系統 (Time resolved photoluminescence spectroscopy, TRPL) 30
3.4.6 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 31
第四章 十三烷基駢苯衍生物之可撓曲薄膜電晶體之研究 41
4.1 前言 41
4.2 電性分析 42
4.2.1 元件製程 42
4.2.2 實驗參數與變因 43
4.2.3 電性結果與討論 44
4.3 薄膜分析 49
4.3.1 元件製程 49
4.3.2 光激發螢光結果與分析 (Photoluminescence, PL) 49
4.3.3 時間解析光激螢光光譜系統結果與分析 (Time resolved photoluminescence spectroscopy, TRPL) 51
4.3.4 掃瞄式電子顯微鏡結果與分析 (SEM) 52
4.4 結論 53
第五章 可撓曲n型有機薄膜電晶體於光偵測器之研究 99
5.1 前言 99
5.2 電性分析 100
5.2.1 元件製程 100
5.2.2 實驗參數與變因 100
5.2.3 電性結果與討論 102
5.3 結論 105
第六章 結論與未來展望 124
6.1 結論 124
6.2 未來展望 125
參考文獻 126
[1].D. F. Barbe, C. R. Westgate, Surface state parameters of metal-free phthalocyanine single crystals, J. Phys. Chem. Solids 31, 2679 (1970)
[2].M. L. Petrova, L. D. Rozenshtein, “Field effect in the organic semiconductor chloranil, Sov. Phys.-Solid State 12, 961 (1970)
[3].H. Koezuka, A. Tsumura, T. Ando, Synth, “Field-effect Transistors with polythiophene thin film, Synth. Met. 18, 699 (1987)
[4].G. Horowitz, “Organic Field-Effect Transistors, Adv. Mater. 10, 365 (1998)
[5].J. Collet, O. Tharaud, A. Chapoton, D. Vuillaume, “Low-Voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films, Appl. Phys. Lett. 76,1941 (2000)
[6].J. Lee, K. Kim, J.H. Kim, S. Im, “Optimum channel thickness in pentacene-based thin-film transistors, Appl. Phys. Lett. 69, 4108 (2003)
[7].P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, Pentacene-based radio-frequency identification circuitry, Appl. Phys. Lett. 82, 3964 (2003)
[8].D.K. Hwang, C. F-H, J. B. Kim, W. J. P. Jr., B. Kippelen, “Flexible and stable-processed organic field-effect transistors, Org. Electronic 12, 1108 (2011)
[9].C. R. Newman, C. D. Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, P. C. Ewbank, Kent R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, Chem. Mater. 16, 4436 (2004)
[10].D. Kumaki, T. Umeda, S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deprotonation of SiOH on SiO2 gate-insulator surface, Appl. Phys. Lett. 92, 093309 (2008)
[11].D. M. de Leeuw, M. M. J. Simenon, A.R. Brown, R. E. F. Einerhand, “Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices, Synth. Met. 87, 53 (1997)
[12].G. Guillaud, M. A. Sadound, M. Maritrot, “Field-Effect Transistors Based on Intrinsic Molecular Semiconductors, Chem. Phys. Lett. 167, 503 (1990)
[13].J. Kastner, J. Paloheimo, H. Kuzmany, “Conduction mechanisms in doped thin film of C60 and C60/70, Science Metals 55 , 3185 (1993)
[14].A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havingga, “Organic N-Type Field-Effect Transistor, Synth. Met. 66, 257 (1994)
[15].R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Herbard, R. M. Fleming, “C-60 Thin-Film Transistors, Appl. Phys. Lett. 67, 121 (1995)
[16].J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Loninger, “n-channel organic transistor materials based on naphthalene frameworks, J. Am. Chem. Soc. 118, 11331 (1996)
[17].J. R. Ostrick, A. Dondabalapur, L. Torsi, A. J. Loninger, E. W. Lwol, T. M. Miller, “Conductivity-type anisotropy in molecular solids, J. Appl. Phys. 81, 6804 (1997)
[18].A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. Marks, R. H. Friend, “Tuning the Semiconducting Properties of Sexithiophene by α,ω-Substitution-α,ω- Diperfluorohexylsexithiophene: The First n-Type Sexithiophene for Thin-Film Transistors, Angew. Chem. Int. Ed. 39, 4547 (2000)
[19].S. Kobaysashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, “C 60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition, Adv. Mater. 4 , 371 (2003)
[20].R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, “Organic thin film transistors based on N-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature, J. Phys. Chem. B. 108, 19281 (2004)
[21].S. Tatermichi, M. Ichikawa, T. Koyama, Y. Taniguchi, “High mobility n-type thin-film transistors based on N,N’-ditridecyl perylene diimide with thermal treatments, Appl. Phys. Lett. 89, 112108 (2006)
[22].J. H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, “Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,N’-bis(heptafluorobutyl) 3,4:9,10-perylene diimide, Appl. Phys. Lett. 91, 212107 (2007)
[23].S. Hutter, M. Sommer, M. Thelakkat, n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers, Appl. Phys. Lett. 92, 093302 (2008).
[24].Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, D. Zhu, “Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor J. Mater. Chem. 20, 1203 (2009)
[25].H. G. Jeon, et al. , “Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain, J. Appl. Phys. 108 , 124512 (2010)
[26].黃銘湧,具不同烷基駢苯衍生物之有機薄膜電晶體特性研究,國立成功大學碩士論文 (2007)
[27].C. Rolin, K. Vasseur, S. Schols, M. Jouk, G. Duhoux, High mobility electron-conducting thin-film transistor by organic vapor phase deposition, Appl. Phys. Lett. 93, 033305 (2008)
[28].Hyeon-Gu Jeon, Jinya Hattori, Shimpei Kato, Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain, J. Appl. Phys. 108, 124512 (2010)
[29].黃佑沂,不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究,國立成功大學碩士論文 (2007)
[30].林益生,以烷基駢苯衍生物作為主動層之有機薄膜電晶體,國立成功大學碩士論文 (2008)
[31].F. Yakuphanoglu, “Evaluation of photoresponse in solution-processable ZnO thin film transistor for radiative sensor applications, Sensors and Actuators A:Phys. 173, 141 (2012)
[32].Wei Hu, Yi Zhao, Jingying Hou, Chunsheng Ma, Shiyong Liu, Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer, Microelectron. J.38, 632 (2007)
[33].S. Gowrisanker, M. A. Quevedo-Lopez, H. N. Alshareef, B. E. Gnade, S. Venugopal, R. Krishna, K. Kaftanoglu, D. R. Allee, “A novel low temperature integration of hybrid CMOS devices on flexible substrates, Org. Electronics 10, 1217 (2009)
[34].T. Sekitani, S. Iba, Y. Kato, T. Someya, “Bending effect of organic field-effect transistors with polyimide gate dielectric layers, Jpn. J. Appl. Phys. Par1. 44, 2841 (2005)
[35].T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, T. Someya, T. Sakurai, S. Takagi, “Bending experiment on pentacene field-effect transistors on plastic films, Appl. Phys. Lett. 86 , 073511 (2005)
[36].J.C. Ribierre, K. Takaishi, T. Muto, T. Aoyama, “Flexible organic field-effect transistors and complementary inverters based on a solution-processable quinoidal oligothiophene derivative, Optical Mat. 33, 1415 (2011)
[37].W. Y. Chou, J. Chang, C. T. Yen, F. C. Tang, H. L. Cheng, M. H. Chang, Steve Lien-Chung Hsu, J. S. Chen, Y. C. Lee, “Nanoimprinting-induced efficiency enhancement in organic solar cells, Appl. Phys. Lett. 99, 183108 (2011)
[38].W. J. Chiang, C. J. Lin, Y. C. King, “Embedded Optical Sensor Using Gate-Body-Tied Thin-Film Transistor on Low-Temperature Poly-Silicon Display Panel, Electrochemical and Solid-State Lett. 12, J51 (2009)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top