跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家暉
研究生(外文):Jia-HuiLin
論文名稱:研究P3HT/PMMA聚摻物應用於有機薄膜電晶體當氣體感應器
論文名稱(外文):Studies of Poly (3-hexylthiophene) and Poly (methyl methacylate) blends based organic thin film transistors as gas sensor
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:混摻半導體P3HT雙閘極結構電場調控氣體感應器
外文關鍵詞:Organic thin-film transistorsPolyblendsGas sensors sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討使用高分子半導體poly (3-hexylthiophene) (P3HT)混摻絕緣高分子 poly (methyl methacrylate) (PMMA)為主動層之有機薄膜電晶體的電特性與應用,本論文分成兩部分,第一部分,研究PMMA的摻合比例對P3HT/PMMA摻合物為主動層電晶體之電特性的影響,並進一步探討雙閘極作用與電場調制成膜對元件電特性的影響;第二部分,著重於將電晶體元件應用在氮氣感知器,氣體侵入與通道載子的交互作用將表徵在電流的變化程度上,相關的物理機制被探討。
第一部分,混摻不同比例之PMMA與P3HT作為電晶體元件的主動層,探討其電特性。純P3HT為主動層的元件,其電特性受水氧影響甚大,當摻合PMMA進入P3HT,會使元件有較佳的抗水氧性,然而,由於PMMA的絕緣特性,也會造成通道電流的降低。本研究進一步製作雙閘極元件與利用外加電場調整主動層微結構,可達成增強電流輸出。於雙閘極操作模式,發現上閘極負偏壓的施加,將有助於提升通道內的電洞濃度,因此,提高載子遷移率同時可降低臨界電壓。當製作主動層時,同時施加與通道平行的水平電場,可改善P3HT結構的次序性,因此表現出較佳的元件電性。
第二部分,聚焦於將P3HT:PMMA摻合物為主動層的電晶體元件應用在氮氣感應器上,製備一系列不同摻合比例之P3HT-PMMA薄膜,當摻合重量比為1:0.75時,可得極佳之氮氣觸發訊號,此氣體感應元件同時具備可逆性、可穩定操作於空氣中、高反應度的效能;當摻入較多的PMMA,元件有較差的氮氣感應效果,當PMMA摻合比例過低,元件明顯受水氧影響,造成氮氣感應不良。我們進一步提出一物理吸附模型,可合理解釋吹入氮氣,將使元件電流產生明顯變化。

This thesis investigated the electrical properties and sensor applications of regioregularpoly(3-hexylthiophene) (P3HT):poly(methyl methacrylate) (PMMA) polyblends-based organic thin film transistors (OTFTs). The study can be divided into the following two parts: (1) The effect of the insulating PMMA content on the electrical characteristics of RR-P3HT:PMMA polyblends–based OTFTs was investigated. Furthermore, the dual-gate OTFT structure and electric field-assisted deposition of the active layer were employed to improve the electrical performance, respectively; (2) We studied the RR-P3HT:PMMA polyblends–based OTFTs as a nitrogen (N2) gas sensors. The physical origins of N2 gas-dependent output current of the OTFTs were discussed.
In part 1, we studied the effects of insulating PMMA on the electrical characteristics and electrical stability of the RR-P3HT:PMMA polyblends–based OTFTs. Without blending PMMA, the RR-P3HT-based OTFTs in air ambient show worse electrical performance due to moisture and oxygen. After introducing an appropriate amount of PMMA into P3HT, we observed a considerable improvement in the electrical stability of the corresponding devices. When excessive amounts of insulating PMMA are present in the blends, the long-range connection between conducting P3HT chains would be disrupted, thereby lowering output current. By utilizing dual-gates of OTFTs, an increased hole concentration within the active channel was achieved when a negative top-gate voltage was applied, thereby increasing on-current, hole mobility, and early turn-on threshold voltage. Alternatively, we proposed an novel approach for preparing RR-P3HT:PMMA blend films that an external electric field used to align polymer chains parallel to the active channel of OTFTs during thin film deposition process, thus improving the ordering of the microstructures. The resulting OTFTs exhibit better performance than devices based on the blends without applying electric field during the film formation process.
In part 2, we show that the RR-P3HT:PMMA polyblends–based OTFTs can be employed as a good N2 gas sensor by tuning the composition of the polyblends. When the weight ratio of RR-P3HT to PMMA was 1:0.75, an excellent performance level of the OTFT-based gas sensor was obtained. Meanwhile, the N2 gas sensor exhibits fast and reversible responses and a good degree of repeatability even in air ambient. With increasing amount of PMMA in polyblends, we observed a decrease sensor response of the devices. With small amount of PMMA, the electrical characteristics of the devices are highly sensitive to moisture and oxygen in air ambient, thus inferior N2 sensing characteristics. Finally, we proposed a physical absorption model to explain the interaction between N2 molecules and charges within active channel of OTFTs.

目錄
中文摘要 I
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
誌謝 XIII


第一章 簡介與理論基礎 1
1-1有機薄膜電晶體之導論 1
1-2有機薄膜電晶體的發展 2
1-3有機薄膜電晶體之感應器導論 3
1-4有機薄膜電晶體之元件結構與原理 4
1-5有機薄膜電晶體載子傳輸理論與特性公式 5
1-6 研究動機與目的 7
第二章 實驗方法與元件製備 12
2-1實驗材料 12
2-2實驗方法 13
2-3實驗儀器 17
第三章P3HT/PMMA聚摻物對薄膜電晶體電特性的研究 22
3-1前言 22
3-2 實驗參數設定 24
3-3 實驗結果與討論 24
3-3-1摻合系統之電性探討 25
3-3-2雙閘極系統之電性探討 26
3-3-3電場調控系統之綜合探討 29
3-4結語 30
第四章P3HT混摻PMMA電晶體應用於氣體感應器之研究 51
4-1前言 51
4-2實驗參數設定 52
4-3 實驗結果與討論 52
4-3-1電性分析 53
4-3-2氣體感應之分析 54
4-3-3氮氣流量之分析 56
4-3-4相異氣體之分析 57
4-3-5不同溫度之分析 58
4-5結語 59
第五章 總結與未來展望 76
參考文獻 78


[1] J. E .Lilienfeld, “Device for controlling electric current, US.Patent 1,900,018. Field 1928.Granted (1933)

[2] D. Kahng, M. M. Atalla, “Sliicon-silicon dioxide field induced surface devices, IREAIEE Solid-State Device Res.Conf., (1960)

[3] A. G. MacDiarmid, A. J. Epstein, “The concept of secondary doping as applied to polyaniline, Synth. Met., 65, 103, (1994)

[4] M. A. Green, K.Emery, Y. Hishikawa, W. Warta, Solar cell
efficiency tables (version 38), Prog Photovoltaics., 19, 5, 565, (2011)

[5]M. Sessolo, H. Bolink, “Hybrid organic–inorganic light-emitting diodes, Adv. Mater., 23, 1829–1845, (2011)

[6]F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface , J. Appl. Phys., 54, 3255, (1983)

[7]F. Garnier, “All-polymer field-effect transistor realized by printing techniques, Science., 16, 1684-1686, (1994)

[8]S. L. Wright, L. F. Palmateer, H. Klauk, T. N. Jackson, Amorphous SiGe:H black matrix material for active matrix liquid crystal displays, 38th Electronic Materials Conference Digest., 71, (1996)

[9]D. J. Mascaro, Organic thin-film transistors: A review of recent advances, IEEE Trans. Electron Devices., 45, (2001)

[10]H. klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, “High-mobiliy polymer gate dielectric pentacene thin film transistors, J. Appl. Phys,. 92, 5259, (2002)

[11]H. Jiang, H. Zhao, K. K. Zhang, X. Chen, C. Kloc, W. Hu, “High-performance organic single-crystal field-effect transistors of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory devices, Adv. Mater., 23, 5075–5080, (2011)

[12]H. Laurs, G. Heiland, “Electrical and optical properties of phthalocyanine films, Thin Solid Fil. 149,129-142 (1987)

[13]L. Torsi, A. Dodabalapur, L. Sabbatini, P. G. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors, Sensors and Actuators B.,67, 312–316, (2000)

[14]B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, Z. Bao. B. Crone, “Electronic sensing of vapor with organic transistors, Appl. Phys. Lett., 78, 2229, (2001)

[15]J. Janata, M. Josowicz, “Conducting polymer in electronic chemical sensors, Nat. Mater., 2, 19, (2003)

[16]L. Peng, Y. Feng, “Organic thin-film transistors for chemical and biological sensing, Adv. Mater., 24, 34–51, (2012)

[17]A. Miller, E. Abrahams, “Impurity conduction at low concentrations, Phys. Rev., 120, 745-755, (1956)

[18]D. A. Neamen, “Semiconductor physics and devices basic principles 3rd edition, (2003)

[19]A. Babel, S. A. Jenekhe, “Field-effect mobility of charge carriers in blend of regioregularpoly(3-alkylthiophene)s, J. Phys. Chem., 107, 1749-1754, (2003)

[20]A. Babel, S. A. Jenekhe, “Charge carrier mobility in blends of poly(9,9-dioctylfluorene)andpoly(3-hexylthiophene), Macromolecules, 36, 7759-7764, (2003)

[21]C. Kilwon, “Organic thin-film transistors based on polythiophene
nanowires embedded in insulating polymer, Adv. Matter., 21, 1349-1353, (2009)

[22]M. Estrada, I. Mejia, A. Cerdeira, B. Iniguez, “MIS polymeric structures and OTFTs using PMMA on P3HT layers, Solid-State Electronics., 52, 53–59, (2008)
[23]F. C. Wu, H. L. Cheng, Y. T. Chen, M. F. Janga, W. Y. Chouab, “Polymer bilayer films with semi-interpenetrating semiconducting/insulating microstructure for field-effect transistor applications, Soft. Matter., 7, 11103-11110, (2011)
[24]Y. J.Lee,S. H. Kim, H. Yang, M. Jang, S. S. Hwang, H. S. Lee,
K. Y. Baek, “Vertical conducting nanodomains self-assembled from poly(3-hexyl thiophene)-based diblock copolymer thin films, J Phys. Chem., 115, 4228–4234, (2011)
[25]A. Babel, S. A. Jenekhe, “Morphology and field-effect mobility of charge carriers in binary blends of poly(3-hexylthiophene) with poly[2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene] and polystyrene, Macromolecules., 37, 9835-9840, (2004)
[26]T. J. Ha, D. Sparrowe, A. Dodabalapur, “Device architectures for improved amorphous polymer semiconductor thin-film transistors , Organic Electronics., 12, 1846–1851, (2011)
[27]M. J. Spijkma, K. Myny, C. P. Smits, P. Heremans, P. W. M. Blom,
D. M. deLeeuw, “Dual-gate thin-film transistors, integrated circuits and sensors, ,Adv. Mater., 23, 3231–3242, (2011)
[28]H. L. Cheng, J. W. Lin, M. F. Jang, F. C. Wu, W. Y. Chou, M. H. Chang, C. H. Chao,“Long-term operations of polymeric thin-film transistors electric-field-induced intrachain order and charge transport enhancements of conjugated poly(3-hexylthiophene), Macromolecules., 42, 21, ( 2009)

[29]J. H. Choi, H. S. Seo, J. M. Myounga, “Dual-gate InGaZnO thin-film transistors with organic polymer as a dielectric layer, Electrochemical and Solid-State Letters., 12, 145-148, (2009)

[30]G. H. Gelincka, E. Veenendaal, “Dual-gate organic thin-film transistors, Appl. Phys. Lett., 87, 073508, (2005)

[31]F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonteijn, F. Brouwer, J. C. Hummelen, D. M. de. Leeuw, P. W. M. Blom, B. de. Boer, “Device characteristics of polymer dual-gate field-effect transistors , Organic Electronics., 9, 839–846, (2008)

[32]Joshi, S. Pingel, P. Grigorian, S. Panzner, T. Pietsch, U. Neher, D. Forster, M. Scherf, “Bimodal temperature behavior of structure and mobility in high molecular weight P3HT thin films, Macromolecules., 42, 4651–4660, (2009)

[33]B. M. J. Spijkman, J. J. Brondijk, T. C. T. Geuns, E. C. P. Smits, T. Cramer, F. Zerbetto, P. Stoliar, F. Biscarini, P. W. M. Blom, D. M. deLeeuw, “Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution, Adv. Funct. Mater., 20, 898–905, (2010)

[34]Y. Fu, F. Y. Tsai, “Air-stable polymer organic thin-film transistors by solution-processed encapsulation, Organic Electronics., 12, 179–184, (2011)

[35]K. A. Weerakoon, J. H. Shu, B. A. Chin, “A chemiresistor Sensor with a poly3-Hexylthiophene active layer for the detection of insect Infestation at early stages, IEEE SENSORS JOURNAL., 11, 7, (2011)

[36]H. W. Zan, C. H. Li, C. C. Yeh, M. Z. Dai, H. F. Meng, “Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors , Appl.Phys.Lett., 98, 253503, (2011)

[37]H. W. Zan, W. W. Tsai, Y. R.Lo, Y. M. Wu, Y. S. Yang “Pentacene-based organic thin film transistors for ammonia sensing, IEEE SENSORS JOURNAL., 12, 3, (2012)

[38]P. Kumar, A. Sharma, S. R. Chaudhuri, S. Ghosh, “Effect of deep traps on small molecule based thin film transistors, ,Appl. Phys. Lett., 99, 173304, (2011)

[39]L. Torsi, F. Marinelli, M. D. Angione, A. D. Aquila, N. Cioffi,
E. D. Giglio, L. Sabbatini, “Contact effects in organic thin-film transistor sensors, Organic Electronics., 10, 233–239, (2009)

[40]B. T. Someya, A. Dodabalapur, J. Huang, K. C. See, H. E. Katz, “Chemical and physical sensing by organic field-effect transistors and related devices, Adv. Mater., 22, 3799–3811, (2010)

[41]J. W. Jeong, Y. D. Lee, Y. M. Kim, Y. W .Park, J. H. Choi, T. H. Parka, C. D. Soo, S. M. Wonb, I. K. Hanc, B. K. Ju, “The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors, Sensors and Actuators B., 146, 40–45, (2010)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top