跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李逸豪
研究生(外文):Yi–HaoLi
論文名稱:利用共溶劑調控高分子太陽能電池之光電特性研究
論文名稱(外文):Modulation of photovoltaic characteristics of polymer solar cells by co-solvent methods
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:高分子太陽能電池聚(3-己烷噻吩)茚-碳六十的雙加成物微結構共溶劑
外文關鍵詞:polymer solar cellpoly(3-hexylthiophene) (P3HT)Indene-C60 Bisadduct (IC60BA)microstructureco-solvent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用共溶劑的方式製作以聚(3-己烷噻吩)(poly(3-hexylthiophene), P3HT)與茚-碳六十的雙加成物(Indene-C60 Bisadduct, IC60BA)為主動層材料的高分子太陽能電池,選用的主要溶劑為鄰二氯苯(1,2-dichlorobenzene, DCB),混摻溶劑為二氯甲烷(dichloromethane, DCM)或三氯甲烷(chloroform, CF),其中DCM對P3HT有較差的溶解性,而CF則有較高溶解性。我們利用吸收光譜、拉曼光譜、光激螢光光譜、原子力顯微鏡與X光繞射光譜等儀器分析薄膜,比較並探討不同共溶劑對主動層內微結構的影響,提出合理解釋共溶劑對電特性影響的原因。
本研究電特性的結果顯示,兩組共通點在混合比例為50 %內電特性的變化類似,其填充因子隨著外加溶劑添加比例越高而越低,短路電流密度則增加,且轉換效率亦有增加趨勢,在混和比例為50 %有最高的轉換效率,特別是混摻DCM的共溶劑可高達5.23 %。經由α-step量測厚度,發現隨著外加溶劑比例越高,膜厚也會增厚,而在外加溶劑低於50 %時,隨著膜厚增厚,因為吸光量增加,造成短路電流密度也提高。然而在高比例的外加溶劑時,隨著膜厚增加,短路電流密度卻下降。因此進一步藉由光譜學的方法分析共溶劑對主動層內微結構的影響。結果顯示,混入DCM較不影響P3HT結晶,若混入高比例的CF時,CF則會進行類似“破壞”P3HT的結晶,使其微結構產生較無序的排列,且由原子力顯微鏡也可觀測到表面的晶粒有明顯變小。因此在高比例的外加溶劑時,雖然厚度提升,但由於P3HT的結晶變差,載子的傳輸路徑變短,增加載子複合的機率,造成填充因子下降,進而使短路電流密度變小。

In this study, we prepared the poly(3-hexylthiophene) (P3HT):Indene -C60 Bisadduct (IC60BA) blend films-based polymer bulk heterojunction (BHJ) solar cells by the co-solvent methods. The host solvent was 1,2-dichlorobenzene (DCB), and mixed with dichloromethane (DCM) or chloroform (CF) as co-solvents. For P3HT, DCM and CF are poor and good solvents, respectively. To investigate the effects of co-solvents on microstructure of the active layers, the P3HT:IC60BA films were characterized by absorption spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, atomic force microscopy (AFM) and X-ray diffraction (XRD). The correlation between the microstructural properties of the active layers and photovoltaic properties of the polymer BHJ solar cells was discussed.
For the photovoltaic properties of the solar cells made by the DCM:DCB co-solvents with the volume fraction of DCM (fm) was below 50%, we observed that the fill factor (F.F.) decreased when the fm was increased, while increasing short-circuit current density (Jsc) and power conversion efficiency. When the fm is below 50%, the increased in JSC can be attributed to higher absorbance arising from thickness contributions. When the fm is higher than 50 %, however, we observed a reduction in the JSC, reflecting the decreased probability of charge carriers transport to the right electrodes due to largely increasing active layer thickness. Above-motioned observations still hold true for the solar cells made by the CF:DCB co-solvents. Microstructural analysis results revealed that the crystalline P3HT in the P3HT:IC60BA blend films were not affected by changing the composition of the DCM:DCB co-solvents. In contrast, we observed more amorphous P3HT contents and smaller grain size of the films made by the CF:DCB co-solvents, thereby poor carrier transport and increased probability of carrier recombination. This provides a reasonable basis for the lower F.F. and Jsc of the solar cells. Finally, we have demonstrated a P3HT:IC60BA blends-based solar cell with high power conversion efficiency of 5.23 % by using the DCM:DCB co-solvent with fm of 50 %

目錄
中文摘要………………………………………………………………….I
Abstract……………………………………………………………….III
致謝……………………………………………………………………...V
目錄……………………………………………………………………..VI
表目錄……………………………………………….………….………IX
圖目錄…………………………………………………...………………X
第一章 緒論……………………………………………………………..1
1-1前言 1
1-2高分子太陽能電池的簡史 4
1-3高分子太陽能電池的參數介紹 8
1-3-1開路電壓 8
1-3-2 短路電流密度 9
1-3-3填充因子 9
1-3-4 轉換效率 10
1-4高分子太陽能電池的工作原理 11
1-5太陽能電池的等效電路 15
1-5-1理想等效電路模型 15
1-5-2 非理想等效電路模型 16
1-6太陽光頻譜 17
1-7研究動機 19
第二章 實驗方法及步驟.....................................28
2-1 實驗材料 28
2-2 元件製程流程 29
2-2-1 主動層溶液配置 29
2-2-2 元件製程 29
2-2-3元件量測及分析儀器 33
第三章 以共溶劑製作P3HT:IC60BA高分子太陽能電池之研究 …38
3-1 前言 38
3-2 元件的薄膜分析 41
3-2-1 元件電特性 41
3-2-2 紫外-可見光吸收光譜分析 43
3-2-3拉曼光譜分析 45
3-2-4 光激螢光光譜分析 48
3-2-5 原子力顯微鏡表面結構分析 50
3-2-6 X光繞射光譜分析 51
第四章 總結...............................................79
4-1 結果與討論 79
4-2 未來展望 83
參考文獻………………………………………………………….…… 84


[1] B. J. Peet, M. Senatore, A. J. Heeger & G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells, Adv. Mater., 21, 1521(2009).
[2] D. J. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. W. Kim & D. Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation, Appl. Phys. Lett., 91, 081102(2007).
[3] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles & S. E. Shsheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition Shaheen , Appl. Phys. Lett., 92, 033301(2008).
[4] S. S. Kim, S. I. Na, J. Jo, G. Tae & D. Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting, Adv. Mater., 19, 4410(2007).
[5] P. Schilinsky, C. Waldauf & C. J. Brabec, “Performance Analysis of Printed Bulk Heterojunction Solar Cells, Adv. Funct. Mater., 16, 1669(2006).
[6] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R.
Gaudiana & C. Brabec, “High Photovoltaic Performance of a Low-Bandgap Polymer, Adv. Mater., 18, 2931 (2006).
[7] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe & J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers, Appl. Phys. Lett., 92, 033306(2008).
[8] www.nrel.gov/ncpv/images/efficiency_chart.jpg
[9] Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulkheterojunction solar cells. “Polymer-Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater., 21, 1323(2009).
[10] R. Sondergaard, M. Hosel, D. Angmo, T. T. Larsen-Olsen & F. C. Krebs, “Roll-to-roll fabrication of polymer solar cells, Materialstoday, 15, 1(2012).
[11] H. Shirakawa; E. J. Lousi; A. G. MacDiarmid; C. K. Chiang &
A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers :Halogen Derivatives of Polyacetylene, (CH)x , J.Chem. Soc.,Chem. Comm., 578(1977)
[12] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau & A. G. Macdiarmid, “Electrical-Conductivity in Doped Polyacetylene, Phys Rev Lett, 39, 1098(1977).
[13] C. W. Tang, “Multilayer organic photovoltaic elements, US patent 4, 164, 431(1979).
[14] C. W. Tang, “2-layer organic photovoltaic cell, Appl. Phys. Lett., 48,183–185 (1986).
[15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger & F. Wudl, “Photo- induced electron-transfer from a conducting polymer to Buckminster- fullerene, Science, 258, 1474 (1992).
[16] J. C. Hummelen, et al. “Preparation and characterization of fulleroid and methano fullerene derivatives, J. Org. Chem., 60, 532(1995).
[17] N. S. Sariciftci, L. Smilowitz, A. J. Heeger & F. Wudl, “Semiconducting polymers (as donors) and Buckminsterfullerene (as acceptor) —photoinduced electron-transfer and heterojunction devices, Synth. Met., 59, 333(1993).
[18] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci & P. Denk,
“Effect of LiF/metal electrodes on the performance of plastic solar Cells, Appl. Phys. Lett., 80, 1288(2002).
[19] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells, Adv Funct Mater., 13, 85(2003).
[20] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery & Y.Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat Mater., 4, 864 (2005).
[21] B.W. Ma, C. Yang, X.Gong, K.Lee & A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of Interpenetrating Network Morphology, Adv Funct Mater., 15, 1617(2005).
[22] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante & A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science, 317, 222(2007).
[23] Jenny Nelson, “Polymer:fullerene bulk heterojunction solar cell, Materialstoday, 14, 10(2011).
[24] F. C. Krebs, S. A. Gevorgyan & J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem., 19, 5442(2009).
[25] Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou & Y. Li, “High-Performance Inverted Polymer Solar Cells with Solution- Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode, Adv. Mater., 24, 1476(2012).
[26] L. Dou, J. You, C. C. Chen , Y. He, S. Murase, T. Moriarty, K. Emery, G. Li & Y.Yang, “Tandem polymer solar cells featuring a spectrally matched lowbandgap polymer, Nature Photonics, 6, 180(2012).
[27] T. Y. Chu, S. Alem, S. W. Tsang; S. C. Tse, S. Wakim; J. P. Lu, G. Dennler, D. Waller, R. Gaudiana & Y. Tao, “Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance, Appl. Phys. Lett., 98, 253301(2011).
[28] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray & L. Yu., “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater., 22, E135(2010).
[29] Z. He, C. Zhong, X. Huang, W. Wong, H. Wu, L. Chen, S. Su & Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short- Circuit Current Density, and Fill Factor in Polymer Solar Cells, Adv. Mater., 23, 4636(2011).
[30] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen & M. T.
Rispens, “Cathode dependence of the open-circuit voltage of polymer :fullerene bulk heterojunction solar cells, J. Appl. Phys, 94, 6849(2003).
[31] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger & C. L. Brabec, “Design rules for donors in bulk-hetero- junction solar cells-Towards10 % energy-conversion efficiency, Adv. Mater., 18, 789(2006).
[32] G. Yu , J. Gao, J. C. Hummelen , F. Wudl & A. J. Heeger, “Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor–acceptor heterojunctions, Science, 270, 1789(1995).
[33] J. J. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglla, R. H. Friend, S. C. Moratti & A.B.Holmes, “Efficient photodiodes from interpenetrating polymer networks, Nature, 376, 498(1995).
[34] M. Pope, & C. E. Swenberg, “Electronic Processes in Organic Crystals and Polymers 2nd edn (Oxford Univ., 1999)
[35] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic., Nature, 428, 911(2004).
[36] Dipl. Ing. Klaus Petritsch, “Organic Solar Cell Architectures, PhD Thesis (2000).
[37] D. E. Markov, C. Tanase, P. W. M.Blom & J. Wildeman, “Simultan- eous enhancement of charge transport and exciton diffusion in poly (p-phenylenevinylene) derivatives, Phys. Rev, B, 72, 045217(2005).
[38] P. Schilinsky, C. Waldauf & C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors, Appl. Phys. Lett., 81, 3885(2002).
[39] M. P. de Jong, L. J. van IJzendoorn, & M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxy -thiophene)/poly(styrenesulfonate)in polymer light-emitting diodes, Appl. Phys. Lett., 77, 2255(2000).
[40] J. Y. Kim, et al., “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater., 18, 572(2006).
[41] J. Gilot, I. Barbu, M. M.Wienk & R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study, Appl. Phys. Lett., 91, 113520(2007).
[42] G. Li, C. W. Chu, V. Shrotriya, J. Huang & Y. Yang, “Efficient inverted polymer solar cells, Appl. Phys. Lett., 81, 253503(2006).
[43] Y. Sun , C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy & A. J. Heeger, “Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoO x as the Anode Interfacial Layer, Adv. Mater., 23, 2226( 2011) .
[44] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen & P. W. M. Blom, “Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells, Adv. Mater., 20, 2116(2008).
[45] M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen & P. W. M. Blom, “Electron Trapping in Higher Adduct Fullerene-Based Solar Cells, Adv. Funct. Mater., 19, 3002(2009).
[46] Y. He, H.Y. Chen, J. Hou & Y. Li, “Indene-C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells, J. Am. Chem. Soc., 132, 1377(2010).
[47] G. Zhao , Y. He & Y. Li., “6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C 60 Bisadduct by Device Optimization, Adv. Mater., 22, 4355(2010).
[48] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, C. S. Hsu, Y. L. Wang &Y. Li, “Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned,Cross-Linked Fullerene Nanorods, Angew. Chem. Int. Ed., 50, 9386(2011).
[49] Y. Sun, C. Cui, H. Wang & Y. Li, “Efficiency Enhancement of Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C 70 Bisadduct via Methylthiophene Additive, Adv. Energy Mater., 1, 1058(2011).
[50] G. Li, R. Zhu & Y. Yang, “Polymer solar cells, Nature photonics, 6, 153(2012).
[51] F. L. Zhang et al., “Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/ fullerene blends, Adv. Funct. Mater., 16, 667(2006).
[52] R. G. Alargova, S. Deguchi & K. Tsujii, “Stable Colloidal Dispersions of Fullerenes in Polar Organic Solvents, J. Am. Chem. Soc., 123, 10460(2001).
[53] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger & G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature materials, 6, 497(2007).
[54] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan & A. J. Heeger, “Processing Additives for Improved Efficiency from BulkHeterojunction Solar Cells, J. Am. Chem. Soc., 130, 3619(2008).
[55] J. S. Moon, C. J. Takacs, Y. Sun & A. J. Heeger, “Spontaneous Formation of Bulk Heterojunction Nanostructures:Multiple Routes to Equivalent Morphologies, Nano Lett., 11, 1036(2011).
[56] F.C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou & F. C. Tang, “Importance of Disordered Polymer Segments to Microstructure- Dependent Photovoltaic Properties of Polymer:Fullerene Bulk Heterojunction Solar Cells, J. Phys. Chem. C, 115, 15057(2011).
[57] F. C. Spano, “Modeling disorder in polymer aggregates: The optical
spectroscopy of regioregular poly(3-hexylthiophene) thin films, J
Chem Phys, 122(2005).
[58] F. C. Spano, “Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances interband coupling and disorder, Chem Phys, 325, 22(2006).
[59] M. Baibararc, M. Lapkowski, A. Pron, S. Lefrant &I. Baltog, “SERS spectra of poly(3-hesylthiophene) in oxidized and unoxidized states, J. Raman. Spectrosc., 29, 825(1998).
[60] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee & M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells, Appl. Phys. Lett.,92, 251912(2008).
[61] A. Sakamoto, Y. Furukawa & M. Tasumi, “Infrared and Raman Studies of Poly(ppheny l enevinylene) and it’s model compounds, J. Phys. Chem., 96, 1490(1992).
[62] H. L. Cheng, J. W. Lin, F. C. Wu, W. R. She, W. Y. Chou, W. J. Shihb & H. S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach, Soft Matter, 7, 351(2011).
[63] J. F. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, M. Giles, M. Heeney & I. McCulloch, “Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers, PHYSICAL REVIEW B, 74, 115318 (2006)
[64] M. Kakudo N. Kasai, X-Ray Diffraction by Macromolecules.
(Kodansha Ltd. and Springer-Verlag Berlin Heidelberg, 2005).
[65] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C.Waldauf & C.J.Brabec, “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar cells, Adv. Funct. Mater., 15, 1193(2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top