跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳咸廷
研究生(外文):Hsien-TingChen
論文名稱:研究氮化矽基板對SU-8光阻之光酸影響並應用於無基材奈米孔隙薄膜製作
論文名稱(外文):Fabrication of free-standing nanohole array membranes by using nitride substrate effect
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Chun-Hung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:干涉式微影無基材奈米孔隙薄膜基板鹼性物質表面電漿
外文關鍵詞:interference lithographyfreestanding nanohole array membranesSiN substrate effectsurface plasmon polariton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
無基材奈米孔隙薄膜在化學分析與生醫領域中皆有廣泛的應用,如做為奈米孔隙濾篩或環境折射率的感測等。近年來奈米孔隙濾篩的相關研究更以孔隙大小均勻與分布高密度為目標。同時若是將其應用於環境折射率的感測,則主要訴求為對環境的靈敏度。
本研究使用了一種新的製程方式,結合干涉式微影與氮化矽基板對光酸的影響,成功的製作出高分子無基材奈米孔隙薄膜。此製程包含了干涉式微影的優點,如大面積製作、省時、低成本且可簡單調變所需孔徑的大小。並藉由氮化矽基板表面之鹼性物質影響光酸,抑制底層光阻的鍵結,除了可控制薄膜厚度外,亦可省略塗佈犧牲層、去除犧牲層或蝕刻等步驟,且氮化矽基板還可重複多次使用。而此製程所製作出的奈米孔隙薄膜,更可達到孔隙大小均勻且分布高密度等優點。
本研究亦結合干涉式微影與犧牲層的塗佈,製作出金奈米孔洞陣列薄膜。同時藉由SPP-Bloch Wave計算其共振吸收的波長位置,與使用嚴格耦合波分析法(RCWA)模擬反射頻譜。最後將其應用於環境折射率的感測,計算其反射頻譜凹陷最低值隨折射率增大而紅移的距離,可知靈敏度達1091.9 nm/RIU。
為了證實氮化矽基板表面有鹼性物質產生並影響光酸,本研究亦使用全反射傅立葉轉換紅外線光譜儀(FTIR-ATR)與化學分析電子儀(ESCA)對基板表面化學組態與元素成分做定量與定性之分析。由結果可知氮化矽分子會於表面產生鹼性物質並導致奈米尺寸的光阻結構於顯影時完整懸浮於水面,且同基板對光酸造成之影響至少達10次曝光。
Freestanding nanohole array membranes with uniform pore size distribution and high density of pores are largely employed in filtration. If depositing gold on these membranes, they also show interesting optical property like surface plasmon polariton (SPP) which can be used as refractive index (RI) sensors.
We demonstrated a new process by interference lithography (IL) and SiN substrate effect on chemically amplified (CA) resist. IL is widely used in nanostructure fabrication, which has advantages of large area fabrication, low cost and high resolution. In addition, IL can be used to fabricate different periods and diameters easily. The bottom pinching phenomenon is observed especially for negative CA resist on SiN substrate. It can lead nanohole array membranes being released from substrates completely. In this study, we also investigated the chemistry of SiN substrate surface by fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis. With this special property, we can fabricate freestanding membranes without sacrificial layer or etching, and control their thickness arbitrarily. In addition, the SiN substrates are reusable and the membranes have uniform pore size and high density of pores.
In the meanwhile, we fabricated gold nanohole array membranes by another approach, which combined IL with PMGI sacrificial layer. This approach could avoid fracture of membranes when depositing gold. The gold nanohole array membranes with SPP property were applied to RI sensing. With theoretical calculation, measurement and rigorous coupled-wave analysis, the results were well-matched and the SPP-Bloch Wave resonance wavelengths were red-shifted when environmental RI increased. With this process, the RI sensors have advantages of tiny sensor chips, real-time, label-free and high sensitivity of 1091.9 nm/RIU.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 論文架構 3
1.3 研究動機 4
第二章 紫外光干涉微影技術 5
2.1 文獻回顧 5
2.2 干涉理論 6
2.3 系統架構 11
2.4 實驗流程 15
2.4.1 基板的清洗與預處理 15
2.4.2 光阻的介紹與塗佈 16
2.4.3 軟烤 18
2.4.4 曝光與劑量的測定 18
2.4.5 曝後烤、顯影與硬烤 19
2.5 結果與討論 24
2.5.1 一維週期性結構 24
2.5.2 二維週期性結構 26
第三章 氮化矽基板對SU-8光阻之光酸影響 33
3.1 緣起 33
3.2 文獻回顧 38
3.3 氮化矽薄膜沉積與分析儀器 39
3.3.1 電漿輔助化學氣相沈積系統(PECVD) 39
3.3.2 全反射傅立葉轉換紅外線光譜儀(FTIR-ATR) 41
3.3.3 化學分析電子儀(ESCA) 43
3.4 量測結果與討論 46
3.4.1 FTIR定性分析 46
3.4.2 ESCA定量量測 47
第四章 無基材奈米孔隙薄膜 53
4.1 文獻回顧 53
4.1.1 奈米孔隙濾篩 53
4.1.2 金屬奈米孔洞陣列 54
4.2 製程機制與步驟 59
4.2.1 光阻的強吸收 59
4.2.2 氮化矽基板影響SU-8光酸 61
4.2.3 PMGI犧牲層 63
4.3 光學量測與應用 75
4.3.1 金奈米孔洞陣列 75
4.3.2 誤差分析與討論 78
第五章 結論 91
5.1 實驗總結 91
5.2 未來展望 92
參考文獻 94
1. G. E. Moore, Progress in digital integrated electronics, in Electron Devices Meeting, 1975 International(1975), pp. 11-13.
2. J. L. Sturtevant, S. J. Holmes, S. E. Knight, D. Poley, P. A. Rabidoux, L. K. Somerville, T. L. McDevitt, A. Stamper, E. Valentine, W. Conley, A. D. Katnani, and J. T. Fahey, Substrate contamination effects in the processing of chemically amplified DUV photoresists, Proc. SPIE 2197, 770-780 (1994).
3. S. Mori, T. Watanabe, K. Adachi, T. Fukushima, K. Uda, and Y. Sato, Investigation of substrate-effect in chemically amplified resist, Proc. SPIE 2724, 8 (1996).
4. C. P. Soo, A. J. Bourdillon, S. Valiyaveettil, A. Huan, A. Wee, M. H. Fan, T. C. Ang, and L. H. Chan, Improvement on lithography pattern profile by plasma treatment, J. Vac. Sci. Technol. A 17, 1526-1530 (1999).
5. S. Choi Pheng, S. Valiyaveettil, A. Huan, A. Wee, A. Ting Cheong, M. H. Fan, A. J. Bourdillon, and C. Lap Hung, Enhancement or reduction of catalytic dissolution reaction in chemically amplified resists by substrate contaminants, Semiconductor Manufacturing, IEEE Transactions on 12, 462-469 (1999).
6. E. J. Saccocio, Application of Lloyd's Mirror to X-Ray Holography*, J. Opt. Soc. Am. 57, 966-966 (1967).
7. H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography, Appl. Phys. Lett. 75, 2328-2330 (1999).
8. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques, Opt. Express 13, 5331-5337 (2005).
9. M. Switkes, and M. Rothschild, Immersion lithography at 157 nm, J. Vac. Sci. Technol. B 19, 2353-2356 (2001).
10. J. de Boor, D. S. Kim, and V. Schmidt, Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd?s interferometer, Opt. Lett. 35, 3450-3452 (2010).
11. A. K. Raub, and S. R. J. Brueck, Deep UV immersion interferometric lithography, Proc. SPIE 5040, 667-678 (2003).
12. A. K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography, J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
13. A. K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. R. Dammel, A. Romano, M. Sato, and W. Hinsberg, Deep-UV immersion interferometric lithography, Proc. SPIE 5377, 306-318 (2004).
14. B. W. Smith, Y. Fan, M. Slocum, and L. Zavyalova, 25 nm immersion lithography at 193 nm wavelength, Proc. SPIE 5754, 141-147 (2004).
15. X. P. Li, S. Shi, Z. Y. Zhang, J. Q. Wang, S. H. Li, F. H. Gao, R. Y. Shi, J. L. Du, C. L. Du, and Y. X. Zhang, Experimental analysis of solid immersion interference lithography based on backside exposure technique, Microelectron. Eng. 88, 2509-2512 (2011).
16. P. N. Dyachenko, S. V. Karpeev, E. V. Fesik, Y. V. Miklyaev, V. S. Pavelyev, and G. D. Malchikov, The three-dimensional photonic crystals coated by gold nanoparticles, Opt. Commun. 284, 885-888 (2011).
17. K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography, Journal of Applied Physics 108, 073113-073114 (2010).
18. X. Zhu, G. Liang, Y. Xu, S.-C. Cheng, and S. Yang, Fabrication of size scalable three-dimensional photonic structures via dual-beam multiple exposure and its robustness study, J. Opt. Soc. Am. B 27, 2534-2541 (2010).
19. Y. K. Pang, J. Lee, H. Lee, W. Y. Tam, C. Chan, and P. Sheng, Chiral microstructures (spirals) fabrication by holographic lithography, Optics Express 13, 7615-7620 (2005).
20. A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography, Advanced Materials 21, 1751-1755 (2009).
21. A. Prenen, A. Knopf, C. Bastiaansen, and D. Broer, In-situ fabrication of polymer microsieves for μTAS by slanted angle holography, Microfluidics and Nanofluidics 10, 1299-1304 (2011).
22. X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, Holographic Control of Motive Shape in Plasmonic Nanogap Arrays, Nano Letters 11, 2715-2719 (2011).
23. Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, and Z. L. Wang, Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays, Nano Letters 10, 3414-3419 (2010).
24. S. Ahn, J. Choi, E. Kim, K. Y. Dong, H. Jeon, B. K. Ju, and K. B. Lee, Combined Laser Interference and Photolithography Patterning of a Hybrid Mask Mold for Nanoimprint Lithography, J. Nanosci. Nanotechnol. 11, 6039-6043 (2011).
25. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, Nanotechnology 16, 1874-1877 (2005).
26. Y.-C. Lin, Laser interference lithography and its application to fabricate phase mask (NCKU, 2011).
27. E. Hecht, Optics (Addison-Wesley, 2002).
28. U. S. Inan, and A. S. Inan, Electromagnetic waves (Prentice Hall, 2000).
29. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, 3D micro- and nanostructures via interference lithography, Adv. Funct. Mater. 17, 3027-3041 (2007).
30. SU-8 2000 Data Sheet, (MicroChem Corp.), http://www.microchem.com/pdf/SU-82000DataSheet2000_5thru2015Ver4.pdf.
31. F. Habraken, and A. E. T. Kuiper, SILICON-NITRIDE AND OXYNITRIDE FILMS, Mater. Sci. Eng. R-Rep. 12, 123-175 (1994).
32. H. Xiao, Introduction to Semiconductor Manufacturing Technology (Prentice Hall, 2001).
33. D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, MECHANISM OF SINXHY DEPOSITION FROM NH3-SIH4 PLASMA, J. Electrochem. Soc. 137, 614-623 (1990).
34. D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis (Thomson Brooks/Cole, 2007).
35. S. J. McClellan, and E. I. Franses, Adsorption of bovine serum albumin at solid/aqueous interfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects 260, 265-275 (2005).
36. 伍秀菁, 汪若文, and 林美吟, 儀器總覽6 表面分析儀器 (行政院國家科學委員會精密儀器發展中心, 1998).
37. PECVD Chamber Diagram, (Oxford Plasma Technology Instrument, UK), http://www.oxford-instruments.com/products/etching-deposition-growth/processes-techniques/plasma-deposition/pecvd/Pages/pecvd.aspx.
38. T. Wang, PECVD Silicon Nitride Film Property and Pre-deposition Surface Treatment Effects on MIMCAP Reliability for InGaP/GaAs HBT Applications, presented at CS MANTECH Conference, USA, 18-21 May. 2009.
39. M. Furuuchi, C. Yamada, and K. Gotoh, Shape separation of particulates by a rotating horizontal sieve drum, Powder Technology 75, 113-118 (1993).
40. L. Leoni, and T. A. Desai, Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations, Biomedical Engineering, IEEE Transactions on 48, 1335-1341 (2001).
41. H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, Analysis of yeast protein kinases using protein chips, Nat Genet 26, 283-289 (2000).
42. C. D. Lytle, L. B. Routson, N. B. Jain, M. R. Myers, and B. L. Green, Virus passage through track-etch membranes modified by salinity and a nonionic surfactant, Appl. Environ. Microbiol. 65, 2773-2775 (1999).
43. C. vanRijn, M. vanderWekken, W. Nijdam, and M. Elwenspoek, Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining, J. Microelectromech. Syst. 6, 48-54 (1997).
44. C. J. M. van Rijn, G. J. Veldhuis, and S. Kuiper, Nanosieves with microsystem technology for microfiltration applications, Nanotechnology 9, 343-345 (1998).
45. L. E. Gutierrez-Rivera, E. J. de Carvalho, M. A. Silva, and L. Cescato, Metallic submicrometer sieves fabricated by interferometric lithography and electroforming, J. Micromech. Microeng. 15, 1932-1937 (2005).
46. K. P. Han, W. D. Xu, A. Ruiz, P. Ruchhoeft, and S. Chellam, Fabrication and characterization of polymeric microfiltration membranes using aperture array lithography, J. Membr. Sci. 249, 193-206 (2005).
47. T. Yanagishita, K. Nishio, and H. Masuda, Polymer through-hole membrane fabricated by nanoimprinting using metal molds with high aspect ratios, J. Vac. Sci. Technol. B 25, L35-L38 (2007).
48. L. E. Gutierrez-Rivera, and L. Cescato, SU-8 submicrometric sieves recorded by UV interference lithography, J. Micromech. Microeng. 18 (2008).
49. M. E. Warkiani, C. P. Lou, and H. Q. Gong, Fabrication and characterization of a microporous polymeric micro-filter for isolation of Cryptosporidium parvum oocysts, J. Micromech. Microeng. 21 (2011).
50. M. E. Warkiani, C. P. Lou, and H. Q. Gong, Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques, Biomicrofluidics 5 (2011).
51. L. Chen, M. E. Warkiani, H. B. Liu, and H. Q. Gong, Polymeric micro-filter manufactured by a dissolving mold technique, J. Micromech. Microeng. 20 (2010).
52. M. E. Warkiani, L. Q. Chen, C. P. Lou, H. B. Liu, R. Zhang, and H. Q. Gong, Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter, J. Membr. Sci. 369, 560-568 (2011).
53. N. J. Shirtcliffe, S. Aqil, C. Evans, G. McHale, M. I. Newton, C. C. Perry, and P. Roach, The use off high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping, J. Micromech. Microeng. 14, 1384-1389 (2004).
54. G. Voskerician, M. S. Shive, R. S. Shawgo, H. v. Recum, J. M. Anderson, M. J. Cima, and R. Langer, Biocompatibility and biofouling of MEMS drug delivery devices, Biomaterials 24, 1959-1967 (2003).
55. R. W. Wood, On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum, Proceedings of the Physical Society of London 18, 269 (1902).
56. U. Fano, The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld?s Waves), J. Opt. Soc. Am. 31, 213-222 (1941).
57. A. Otto, EXCITATION OF NONRADIATIVE SURFACE PLASMA WAVES IN SILVER BY METHOD OF FRUSTRATED TOTAL REFLECTION, Zeitschrift Fur Physik 216, 398-& (1968).
58. E. Kretschmann, and H. Raether, Radiative decay of nonradiative surface plasmons excited by light, Z. Naturforsch. A 23, 2135 (1968).
59. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669 (1998).
60. C. Nylander, B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance, Sensors and Actuators 3, 79-88 (1982).
61. B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators 4, 299-304 (1983).
62. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications, Small 7, 1653-1663 (2011).
63. J. Homola, Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chemical Reviews 108, 462-493 (2008).
64. E. Moulin, P. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Muller, R. Carius, F.-X. Royer, and H. Stiebig, Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles, Appl. Phys. Lett. 95, 033505-033503 (2009).
65. W. Wu, Z. Yu, S.-Y. Wang, R. S. Williams, Y. Liu, C. Sun, X. Zhang, E. Kim, Y. R. Shen, and N. X. Fang, Midinfrared metamaterials fabricated by nanoimprint lithography, Appl. Phys. Lett. 90, 063107-063103 (2007).
66. 吳民耀, and 劉威志, 表面電漿子理論與模擬, 物理雙月刊 28, 486 (2006).
67. N. D. Lai, Y. Di Huang, J. H. Lin, D. B. Do, and C. C. Hsu, Fabrication of periodic nanovein structures by holography lithography technique, Opt. Express 17, 3362-3369 (2009).
68. C. J. Heo, S. H. Kim, S. G. Jang, S. Y. Lee, and S. M. Yang, Gold “Nanograils with Tunable Dipolar Multiple Plasmon Resonances, Advanced Materials 21, 1726-1731 (2009).
69. S. Nishiuma, Y. Handa, T. Imamura, M. Ogino, T. Yamada, K. Furusawa, and R. Kuroda, Localized Surface Plasmon Resonant Metal Nanostructures as Refractive Index Sensors, Japanese Journal of Applied Physics 47, 1828.
70. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, Nanohole-Enhanced Raman Scattering, Nano Letters 4, 2015-2018 (2004).
71. H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, Ag dots array fabricated using laser interference technique for biosensing, Sensors and Actuators B: Chemical 134, 940-944 (2008).
72. K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, Development of a mass-producible on-chip plasmonic nanohole array biosensor, Nanoscale 3, 5067-5075 (2011).
73. J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A.-M. Haghiri-Gosnet, Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography, Microelectron. Eng. 86, 632-635 (2009).
74. S. Y. Lee, S.-H. Kim, S. G. Jang, C.-J. Heo, J. W. Shim, and S.-M. Yang, High-Fidelity Optofluidic On-Chip Sensors Using Well-Defined Gold Nanowell Crystals, Analytical Chemistry 83, 9174-9180 (2011).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top