跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳元閔
研究生(外文):Yuan-MingChen
論文名稱:應用液相氧化法為閘極介電層於砷化銦鋁/砷化銦鎵反向高速電子移動率電晶體之研究
論文名稱(外文):Liquid Phase Oxidized InAlAs as Gate Insulator for InAlAs/InGaAs Inverted-type Metal-Oxide-Semiconductor High-Electron-Mobility Transistors Applications
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:57
中文關鍵詞:液相氧化法砷化銦鋁金氧半反向高電子移動率電晶體
外文關鍵詞:LPOInAlAsMOSInverted-type HEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文為致力於利用液相氧化法成長於砷化銦鋁上,作為閘極介電層並應用於砷化銦鋁/砷化銦鎵反向高電子移動率電晶體之研究。相較於其他的氧化系統,液相氧化法是一種簡易、低成本及低溫成長(30-70°C)的氧化法且不需額外能源輔助。
本論文研製藉由在砷化銦鎵通道層中置入極薄之砷化銦插入層以獲得更好之電晶體直流與轉導特性。針對直流特性而言,相較於傳統高電子移動率電晶體,應用砷化銦鎵氧化層作為閘極介電層於金氧半高電子移動率電晶體上,當最大閘極操作偏壓為2.5V時,可得最大汲極飽和電流為609 mA/mm(提升32 %),最大轉導為327 mS/mm(提升35 %)。正向導通電壓為3.98V,逆向崩潰電壓-4.62 V,而傳統高電子移動率電晶體逆向崩潰電壓僅為-2.5V。
針對高頻特性而言,傳統高電子移動率電晶體及金氧半高電子移動率電晶體之截止頻率分別為5.7 GHz和5.62 GHz,最大震盪頻率分別為4.2 GHz和3.9 GHz。對於高頻雜訊而言,因表面能態密度下降,使得金氧半高速電子移動率電晶體有較好特性。

Native InAlAs oxide prepared by liquid phase oxidation (LPO) method as the gate insulator in the fabrication of InAlAs/InGaAs inverted-type metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) ispresented. The liquid phase oxidation system is simple, low-cost, and near temperature (30-70℃) without using extra energy to form a native oxide layer.
In this work, we invested an InAlAs/InGaAs HEMT with a thin InAs layer inserted into the InGaAs channel layer to get improved DC and transconductance performance. To further improve HEMT performance, the InAlAs native oxide is used as the gate insulator for MOS-HEMT applications. In the DC measurements, the maximum drain current density is found to be 609 mA/mm at the gate-to-source voltage of 2.5 V, representing an improvement of about 32%. Meanwhile, the extrinsic transconductance is 327 mS/mm, representing an improvement of about 35%. The maximum turn-on voltage is 3.98 V, and the breakdown voltage is -4.62 V.
The cut-off frequencies of conventional HEMTs and MOS-HEMTs are 5.7 GHz and 5.62 GHz; the maximum oscillation frequencies are 4.2 GHz and 3.9 GHz, respectively.And the noise figure is improved in MOS-HEMT owing to the reduced surface states.

ABSTRACT (Chinese) ...…………………………………………………………… I
ABSTRACT (English) ...…………………………………………………………… II

CONTENTS ...……………………………………..………………………………… IV

FIGURE CAPTIONS …....…………………………………..……………………… VI

TABLE CAPTIONS ...……………………………………..………………………… VIII


CHAPTER 1 Introduction
1.1 Background……………………………………………………….. 1
1.2 Organization…………..………………...…....…………………… 3

CHAPTER 2 Experimental Procedures and LPO Characterizations
2.1 Fabrication of Liquid Phase oxidation films……………………..... 5
2.2 Oxidation mechanism….....................................…...……………... 6
2.3 Refractive index of LPO-oxide film……………...…………….… 6
2.4 Physical characteristics of atomic force microscope (AFM) images……………………………………7

CHAPTER 3 Fabrication Procedures of the InAlAs/InGaAs Inverted-Type HEMT with LPO
3.1 Introduction…………..……………………………………………. 13
3.2 Device structure…………………………………………....……… 14
3.3 InAlAs/InGaAs MOS-HEMT…..………………………………..... 14

CHAPTER 4 Performance of InAlAs/InGaAs Inverted-Type MOS-HEMTs
4.1 Introduction………….……..………………………………...…… 25
4.2 DC experiment results………………….…...………...…………… 25
4.2.1 Saturated Drain Current…………………………………..…. 25
4.2.2 Transconductance…..………………………………………... 26
4.2.3 Gate leakage Current...………………………………………. 27
4.2.4 Turn-on and Breakdown Voltage………………………...….. 27
4.3 Microwave experiment results……...………………..…………… 28
4.3.1 Cutoff Frequency and Maximum Oscillation Frequency…… 29
4.3.2 Noise Figure Performance…………………………………... 30
4.3.3 Low Frequency Noise……………………………………….. 31

CHAPTER 5 Conclusions and Future Works
5.1 Conclusions………….. …………………………………………… 49
5.2 Future works…………………... ……...……...……...……….…... 49


Reference …………… …………….......………………...…………………………… 51
VITA ….…………………………...…………………………………………… 57

[1] W. Schockley, “Circuit elements utilizing semiconductive material, U. S. Patent, N.2569, p. 347, 1951.
[2] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrication and Circuits, Boston‧London: Artech House, 1991.
[3] G. I. Ng, D. Pavlidis, M. Quillec, Y. J. Chan, M. D. Jaffe. And J. Singh “Study of the consequence of excess indium in the active channel of InGaAs/InAlAs high electron mobility transistors on device properties, Appl. Phys. Lett., vol. 52, no. 9, pp. 728, 1988.
[4] K. Matsumura, D. Inoue, H. NaKano, Minoru Sawada, Yasoo Harada and Takashi Nakakado, “A new HEMT structure with a quantum well formed by inserting monolayers in the channel, in Proc. Int. Symp. GaAs and Related Compounds (Inst. Phys. Conf. Ser. 112) (Jersey, U.K.), 1990, p. 465.
[5] C. C. Eugster, T. P. E. Broekaert, J. A. del Alamo, and C. G. Fonstad, “An InAlAs/InAs MODFET, IEEE Electron Device Lett., vol. 12, no. 12, pp. 707, 1991.
[6] Tatsushi Akazaki, Kunihiko Arai, Takatomo Enoki, and Yasunobu Ishii, “Improved InAlAs/InGaAs HEMT Characteristics by Inserting an InAs Layer into the InGaAs Channel, IEEE Electron Device Lett., vol. 13, no. 6, pp. 325-327, 1992.
[7] H. T. Minden, “Thermal oxidation of GaAs, J. Electrochem. Soc., vol. 109, pp.733, 1962.
[8] S. P. Murarka, “Thermal oxidation of GaAs, Appl. Phys. Lett., vol. 26, no. 4, pp.180-181, 1975.
[9] P. A. Bertrand, “The photochemical oxidation of GaAs, J. Electrochem. Soc., vol. 132, pp. 973-976, 1985.
[10] T. Sawada, H. Hasegawa, and H. Ohno, “Electronic properties of a photochemical oxide-GaAs interface, Jpn. J. Appl. Phys., vol. 26 pp.L1871-L1873, 1987.
[11] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization, J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
[12] G. P. Schwartz, J. E. Griffiths, and B. Schwartz, “Interfacial reactions on anodized GaAs, J. Vac. Sci. Technol., vol.16, no. 5, pp. 1383-1386, 1979.
[13] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFET’s, IEEE Electron Device Lett., vol. 19, no. 8, pp. 309-311, 1998.
[14] M. Passlack, M.Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, “Low Dit thermodynamically stable Ga2O3-GaAs interfaces: fabrication, characterization, and modeling, IEEE Trans. Electron Devices., vol.44, no. 2, pp. 214-225, 1997.
[15] P. D. Ye, G. D. Wilk, B. Yang, S. N. G. Chu, K. K. Ng, and J. Bude, “Improvement of GaAs metal-semiconductor field-effect transistor drain-source breakdown voltage by oxide surface passivation grown by atomic layer deposition, Solid-State Electron., vol. 49, pp. 790-794, 2005.
[16] P.D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition, IEEE Electron Device Lett., vol. 24, no. 4, pp. 209-211, 2003.
[17] H. H. Wang, Y. H. Wang and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresisit as a mask, Jpn. J. Appl. Phy., vol. 37, no. 8, pp. L988-L990, 1998.
[18] H. H. Wang, J. Y. Wu, Y. H. Wang and M. P. Houng, “Effect of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs, J. Electrochem. Soc., vol. 146, pp. 2328-2332, 1999.
[19] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate, IEEE Electron Device Lett, vol. 20, no. 1, pp. 18-20, 1999.
[20] J. W. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate, IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 634-637, 2001.
[21] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application, Jpn. J. Appl. Phy., vol. 43, no. 7, pp. 4087-4091, 2004.
[22] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric, Solid-State Electron, vol. 49, no. 5, pp. 213-217, 2005.
[23] K. W. Lee, N. Y. Yang, M. P. Houng and Y. H. Wang, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate, Appl. Phy. Lett., vol. 87, no. 26, 2005.
[24] K. W. Lee, P. W. Sze, Y. J. Lin, N.Y. Yang, M. P. Houng and Y. H. Wang, “InGaP/InGaAs metal-oxide-semiconductor pseudomophic high-electron-mobility transistor with a liquid-phase-oxidized InGaP as gate dielectric, IEEE Electron Device Letters, vol. 26, no. 12, pp. 864-866, 2005.
[25] J. H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch, J. Vac Sci. Technol. B, vol. 16, pp.558-560, 1998.
[26] M. Otsubo, T. Oda, H. Kumabe, and H. Miki, “Preferential etching of GaAs through photoresist masks, J. Electrochem. Soc., vol. 123, pp. 676-680, 1976.
[27] C. Juang, K. J. Kuhn, and R. B. Darling, “Selective etching of GaAs and Al0.30Ga0.70As with citric acid/hydrogen peroxide solutions, J. Vac. Sci. Technol. B, vol. 8, no. 5, pp. 1122-1124, 1990.
[28] Kai-Lin Lee, “InAlAs/InGaAs Metamorphic High Electron Mobility Transistors with Liquid Phase Oxidized InAlAs as Gate Insulator, Master thesis, National Cheng Kung University, Taiwan, R.O.C, 2006.
[29] J.R. Meyer-Arendt, Introduction to classical and modern optics, Englewood Cliffs, N. J.: Prentice-Hall Inc., 1971.
[30] T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and properties of oxide film, J. Electrochem, Soc., vol. 121, pp. 113-118, 1974.
[31] M. Tong, K. Nummila, A. Ketterson, I. Adesida, C. Caneau and R. Bhat, “InAlAs/InGaAs/InP MODFET’s with uniform threshold voltage obtained by selective wet gate recess, IEEE Electron Device Letters, vol. 13, no. 10, 1992.
[32] S.R. Bahl and J. A. del Alamo, “Elimination of mesa-sidewall gate leakage in InAlAs/InGaAs heterostructures by selective sidewall recessing, IEEE Electron Device Letters, vol. 13, no. 4, pp. 195-197, 1992.
[33] M. Yu, M. Matloubian, P. Petre, L. Hamilton, R. Bowen, M. Liu, H. C. Sun, C. Ngo, and P. Janke, “W-band InP-based HEMT MMIC power amplifiers using finite-ground CPW design, Proc. IEEE GaAs Int. Circuit Symp., pp. 37-40, 1998.
[34] S. Piotrowicz, C. Gaquiere, B. Bonte, E. Bourcier, D. Theron, X. Wallart, and Y. Crosnier, “Best combination between power density, efficiency, and gain at V-band with an InP-based PHEMT structure, IEEE Microwave Guided Wave Lett., vol. 8, no. 1, pp. 10-12, 1998.
[35] P. M. Smith, S. M. J. Liu, M. Y. Kao, P. Ho, S. C. wang, K. H. G. Duh, S. T. Fu, and P. C. Chao, “W-band high efficiency InP-based power HEMT with 600GHz fmax, IEEE Microwave Guided Wave Lett., vol. 5, no. 7, pp. 230-232, 1995.
[36] I. Thayne. “Advanced Ⅲ-Ⅳ HEMTs, The advanced semiconductor magazine, vol. 16, pp. 48-51, 2003.
[37] K. H. G. Duh, C. Pane¬-Chane, P. M. Smith, L. F. Lester, B. R. Lee, J. M. Ballingall, K. Ming¬Yih, High¬ Performance Ka-¬Band and V-¬band HEMT Low-Noise Amplifiers, IEEE Trans. Microwave Theory and Techniques, vol. 36, no. 12, pp. 1598-¬1603, 1988.
[38] J. A. Lester, P. Huang, M. Ahmadi, M. Dufault, D. Ingram, T. H. Chen, D. Garske, P. D. Chouw, HEMT MMIC Chip Set for Low Cost Miniaturized EHF SATCOM Transceiver, IEEE 1994 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 85¬90.
[39] H. Fukui, Optimal noise figure of microwave GaAs MESFET’s, IEEE Trans. Electron Devices, vol. 26, no. 7, pp. 1032¬1037, 1979.
[40] C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang and C. Ito, “Half-micrometer gate-length ion-implanted GaAs MESFET with 0.8-dB noise figure at 16 GHz, IEEE Electron Device Lett., vol. 10, no. 9, pp. 409-411, 1989.
[41] F. N. Hooge, T. G. M. Kleinpenning and L. K. J. Vandamme, “Experimental studies on 1/f noise, Rep. Prog. Phys., vol. 44, pp. 480-530.
[42] G. P. Zhigal`ski, “Nonequilibrium 1/f γnoise in conducting films and contacts, Physics-Uspekhi, vol.46, pp. 449-471, 2003.
[43] F. N. Hooge, “1/f Noise Sources,IEEE Trans. Electron Devices., vol. 40, no. 11, pp. 1926-1935, 1994.
[44] R.J.W. Hill, R. Droopad, D.A.J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, O. Ignatova, A. Asenov, K. Rajagopalan, P. Fejes, I.G. Thayne and M. Passlack,“1 mm gate length, In0.75Ga0.25As channel, thin body n-MOSFET on InP substrate with transconductance of 737 mS/mm, Electronics Letters., vol. 44, no. 7, 2008.
[45] M. Arps, H. G. Each, W. Passenberg, A. Umbach, and W. Schlaak, Influence of SiNx passivation on the surface potential of GaInAs and AlInAs in HEMT layer structures, in Indium Phosphide and Related Materials, 1996. IPRM '96., Eighth International Conference on, 1996, pp. 308-311.
[46] R. Vandersinissen, D. Schreurs, and G. Borghs, Influence of silicon nitride passivation on DC and RF behaviour of InP HEMTs, in Electron Devices for Microwave and Optoelectronic Applications, 2002. EDMO 2002. The 10th IEEE International Symposium on, 2002, pp. 172-176.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊