跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁耿誌
研究生(外文):Keng-ChihLiang
論文名稱:低壓化學氣相沉積法成長石墨烯與特性及應用
論文名稱(外文):Low pressure chemical vapor deposition of graphene and its characterization and applications
指導教授:曾永華曾永華引用關係郭宗枋劉志毅劉志毅引用關係
指導教授(外文):Yon-Hua TzengYon-Hua TzengTzung-Fang Guo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:56
中文關鍵詞:石墨烯表面增強拉曼散射
外文關鍵詞:GrapheneSERS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
經由與二維石墨烯相似的擴散機制成長的三維雪花狀石墨烯,其結構為對稱的六個枝角所組成。相較於平坦邊緣,石墨烯的邊角在單位長度有較多的原子鍵結使得碳原子易沉積,其取決於寬角度擴散的高碳源流量。在小片石墨烯成核的影響下,大片石墨烯在成核過程中,因為氫氣的蝕刻效應導致小片石墨烯被分解成為大片石墨烯的碳來源並快速沉積在邊緣,導致雪花狀石墨烯的產生。進一步的石墨烯成長造成銅片被覆蓋成網絡型的特殊平面結構,藉由關閉氫氣偏壓可合成大面積且連續的石墨烯薄膜。
我們將單原子層石墨烯應用在生物感測器,我們發現氫電漿處理過的石墨烯與銀奈米粒子之間有強烈的電漿子耦合,它的應用在於透過表面增強式拉曼光譜來偵測腺嘌呤的生物分子。高電阻值石墨烯允許銀奈米粒子藉由光激發電漿子來產生電磁場並穿透石墨烯,其也可保護銀奈米粒子因裸露在活性且惡劣的空氣中而導致氧化,亦即是提供銀奈米粒子了一個惰性以及共存的環境來達到表面增強式拉曼的應用。
Two dimensional (2-D) graphene and three-dimensional (3-D) snowflake grow by similar diffusion limited mechanisms to form structures of six-ford symmetry with branches. Compared to a flat edge, corners of a graphene hexagon have more bonding atoms per unit length for easier carbon adsorption and are subjected to a higher carbon flux from a wider incident angle. For small graphene, a large fraction of carbon atoms are at edges compared to large graphene. These edges are etched by atomic hydrogen to become an additional supply of carbon besides dissociation of methane using copper as a catalyst, resulting in rapid growth mechanism resemble snowflake in nature. Further growth forms a network of copper alleys which are surrounded by graphene branches. By tailoring the hydrogen partial pressure to promote graphene growth a continuous film with large domains has been synthesized.
For the biosensor application of the single layer atomic material, we report on strong plasmonic coupling from silver nanoparticles covered by hydrogen-terminated chemically vapor deposited single-layer graphene, and its effects on the detection and identification of adenine molecules through surface-enhanced Raman spectroscopy (SERS). The high resistivity of the graphene after subjecting to remote plasma hydrogenation allows plasmonic coupling induced strong local electromagnetic fields among the silver nanoparticles to penetrate the graphene, and thus enhances the SERS efficiency of adenine molecules adsorbed on the film. The graphene layer protects the nanoparticles from reactive and harsh environments and provides a chemically inert and biocompatible carbon surface for SERS applications.
Table of content
Abstract i
Acknowledgement iii
Table of content iv
List of figure vi
1. Introduction 1
1.1. Snowflake-like graphene 2
1.2. Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy 3
2. Background 6
2.1. Structure 7
2.2. Properties 10
2.2.1. Mechanical properties 10
2.2.2. Electronic properties 10
2.2.3. Vibrational properties 12
2.3. Synthesis 13
2.3.1. Mechanical exfoliation 14
2.3.2. Epitaxial growth on copper 15
3. Raman spectroscopy 18
3.1. Raman scattering, Resonance Raman scattering 19
3.2. Raman scattering of graphene 21
3.2.1. Raman-active phonon modes in graphene 21
3.2.2. Raman spectroscopy for the characterization of graphene 22
3.3. Surface-enhanced Raman Spectroscopy 23
4. Experimental 24
4.1. Graphene growth procedure 24
4.2. Graphene transfer procedure 26
4.3. Graphene biosensor 28
5. Result and Discussion 31
6. Conclusion and future work 50
References 52
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
2.K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 8, 203-207 (2009).
3.X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324(5932), 1312-1314 (2009).
4.X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 9 (12), 4268–4272 ( 2009).
5.B. Hu, H. Ago, Y. Ito, K. Kawahara, M.Tsuji et al., Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmosphericpressure CVD. Carbon 50 (1), 57-65 (2012).
6.X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Lett., 10 (11), 4328–4334 (2010).
7.H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu et al., Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. J. Am. Chem. Soc. 134 (8), 3627–3630 (2012).
8.L. Fan, J. Zou, Z. Li, X. Li, K. Wang et al., Topology evolution of graphene in chemical vapor deposition, a combined theoretical/experimental approach toward shape control of graphene domains. Nanotechnology 23, 115605 (2012).
9.Kenneth G Libbrecht, The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).
10.I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 5 (7), 6069–6076 (2011).
11.C.-Y. Liu, K.-C. Liang, W. Chen, C.-hao Tu, C.-P. Liu et al., Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt. Express 19(18), 17092-17098 (2011).
12.Li Gao, J. R. Guest, N. P. Guisinger, Epitaxial Graphene on Cu(111). Nano Lett.10 (9), 3512–3516 (2010).
13.P. W. Voorhees, “The theory of Ostwald ripening, J. Stat. Phys. 38(1-2), 231-252 (1985).
14.C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).
15.C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi et al., Raman Spectroscopy of Graphene Edges. Nano Lett. 9(4), 1433–1441 (2009).
16.Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng et al., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano 2(11), 2301–2305 (2008).
17.Y. Liu, A. Dobrinsky, B. I. Yakobson, Graphene Edge from Armchair to Zigzag: The Origins of Nanotube Chirality?. Phys. Rew. Lett. 105, 235502 (2010).
18.S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides, J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
19.2. F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite, Phys. Rev. Lett. 95(18), 186101 (2005).
20.H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps, Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
21.T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall, PLoS ONE 4(5), e5470 (2009).
22.C.-H. Huang, H.-Y. Lin, B.-C. Lau, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays, Opt. Express 18(26), 27891–27899 (2010).
23.T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime, Nano Lett. 4(9), 1627–1631 (2004).
24.C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle, Opt. Express 16(13), 9580–9586 (2008).
25.C. H. Huang, H.-Y. Lin, S. Chen, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors, Opt. Express 19(12), 11441–11450 (2011).
26.C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO, Appl. Phys. Lett. 96(3), 033109 (2010).
27.L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy, J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
28.X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553–561 (2010).
29.D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science 323(5914), 610–613 (2009).
30.A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett. 6(12), 2667–2673 (2006).
31.M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy, Tech. Phys. Lett. 36(12), 1140–1142 (2010).
32.C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases, J. Raman Spectrosc. 17(3), 289–298 (1986).
33.H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule, Phys. Rev. B 69(15), 155418 (2004).
34.N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy, J. Chem. Phys. 125(24), 244706 (2006).
35.J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite, Phys. Rev. B 55(8), 5394–5397 (1997).
36.K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding, J. Phys. Condens. Matter 23(13), 135001 (2011).
37.Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
38.H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs, Opt. Express 18(1), 165–172 (2010).
39.I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers, Opt. Express 14(21), 9988–9999 (2006).
40.N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements, Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
41.K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates, J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top