跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝孟宏
研究生(外文):Mung-HungHsieh
論文名稱:以染料摻雜膽固醇液晶微小球製作可光調控三維雷射輸出之研究
論文名稱(外文):Optically tunable three-dimensional lasing emissions based on dye-doped cholesteric liquid crystal micro-droplets
指導教授:李佳榮
指導教授(外文):Chia-Rong Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:86
中文關鍵詞:膽固醇液晶微小球三維雷射器光同素異構化
外文關鍵詞:Cholesteric liquid crystalmicrodroplet3-D laserphotoisomerization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文在染料摻雜膽固醇液晶微小球中加入可光致同素異構化親手性材料,製作一個可光調控的三維輸出雷射元件。實驗結果指出,膽固醇液晶微小球的螺旋軸呈現放射對稱性的分佈,其雷射輸出特性可藉由改變紫外光照射強度而有所不同。當在染料摻雜膽固醇液晶微小球樣品上照射一道弱紫外光(472 μW/cm2),由於同素異構化反應的進行,少數偶氮親手性分子從棒狀trans態轉變至彎曲狀cis態時輕微擾動局部液晶分子的秩序性,在不破壞膽固醇液晶螺旋軸的情況下,造成膽固醇液晶螺距的拉伸,達到可光調控雷射波長之特性,其光調控雷射輸出範圍可從563 nm至586 nm。此外,其雷射強度亦可藉由強紫外光(2.8 mW/cm2)以及藍光的照射達成光控制特性之目的。由於強紫外光所引致的同素異構化反應(trans態至cis態)較為急遽,使得大量的偶氮親手性分子在同素異構化反應的過程中劇烈擾動膽固醇液晶的光子結構,因此雷射訊號消失。藉由照射藍光引致光同素異構化,偶氮親手性材料會從彎曲狀cis態回復至棒狀trans態,使得膽固醇液晶小球的放射狀螺旋結構重新排列整齊,此時雷射再次出現。因此,藉由照射弱紫外光或強紫外光,此微小雷射器可應用於光調控或全光控制之三維雷射輸出元件。
This study demonstrates an optically controllable three-dimensional (3-D) microlaser based on a dye-doped cholesteric liquid crystal (DDCLC) microdroplet with an azo-chiral dopant. Experimental result shows that the distribution of the helical axes in the microdroplet is radially symmetric. With the irradiation of a weak UV light (472 μW/cm2), few azo-chiral molecules becomes curve the cis-isomers via trans-cis isomerization, which may slightly decrease the local order parameter of LCs and thus the helical twisting power (HTP) of the CLC without distorting the helical axis in the microdroplet. This may lead to the increase of the CLC pitch and thus both the red-shifts of the band structure and the lasing emission. The optically-tunable lasing band of the microlaser is 23 nm (563 nm to 586 nm). In contrast, when the DDCLC is irradiated by a strong UV light (2.8 mW/cm2), massive azo-chiral molecules simultaneously becomes curve cis-isomers to significantly disturb the helical axes of CLC. This may result in the disappearance of both the band structure and the lasing emission. Continuing the irradiation of one blue light, the azo-chiral may transform back the rod-like trans-isomers, resulting in the recovery of the radially-symmetric CLC structure, and thus both the band structure and the lasing emission of the microdroplet. This microlaser can therefore be used as an optical tuner and all-optical controller of 3-D lasing emission when irradiating one UV light with a weak and strong intensity, respectively.
摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Figures VIII
List of Tables XIV

Chapter 1 Introduction 1

Chapter 2 Introduction to Liquid Crystals 4
2.1 The Discovery of Liquid Crystals 4
2.2 Classification of Liquid Crystals 5
2.2.1 Lyotropic Liquid Crystals 5
2.2.2 Thermotropic Liquid Crystals 5
2.3 The Physical Properties of Liquid Crystals 11
2.3.1 Optical Anisotropy and Birefringence 11
2.3.2 Dielectric Anisotropy 14
2.3.3 Elastic Continuum Theory of Liquid Crystals 15

Chapter 3 The Related Theories of Cholesteric Liquid Crystals and Lasers 17
3.1 Optical Properties of Cholesteric Liquid Crystals 17
3.2 The Agents Influencing Cholesteric Liquid Crystal Pitch 18
3.2.1 Temperature 18
3.2.2 Magnetic Field 19
3.2.3 Electric Field 20
3.2.4 Optical Field 22
3.3 Planar Cholesteric Liquid Crystals – One-dimensional Photonic Crystals 22
3.4 The Basic Introduction to Cholesteric Liquid Crystal Microdroplets 26
3.5 The Fundamental Principles of Laser 27
3.5.1 Interactions of Photons with Atoms 28
3.5.2 Population Inversion 30
3.5.3 The Basic Operation of Laser 33
3.6 Lasing Emission Based on Dye-Doped Cholesteric Liquid Crystals 33
3.6.1 The Mechanism of Distributed Feedback Lasing 34
3.6.2 The Mechanism of Dye-Doped Cholesteric Liquid Crystal Band-Edge Lasing 35
3.7 Photosensitive Materials 37
3.7.1 Photochromism 37
3.7.2 The Mechanism of Photochromism 38
3.7.3 The Classification of Photochromism 39
3.7.4 Photoisomerization of Azobenzene Derivatives 40
3.7.5 Photoisomerization of Dye-Doped Cholesteric Liquid Crystals 41

Chapter 4 Sample Preparation and Experimental Setups 44
4.1 Materials 44
4.2 Sample Preparation 48
4.2.1 Cleaning of Glass Slides 49
4.2.2 The Mixture of Dye-Doped Cholesteric Liquid Crystals 50
4.2.3 The Fabrication of Empty Cells 52
4.2.4 The Mixture Injection 52
4.3 Experimental Setups 53
4.3.1 Measurement of Absorption Spectra of Azo-chiral 53
4.3.2 Measurement for Optically Tunable Reflection Band and Lasing Emission in a Planar DDCLC cell 54
4.3.3 Measurement for Optically Tunable Lasing Emission in DDCLC-microdroplets cell 55

Chapter 5 Results and Discussion 57
5.1 Optically Tunable Lasing Emission in a Planar Dye-Doped Cholesteric Liquid Crystal 57
5.1.1 Energy Threshold of Planar Dye-Doped Cholesteric Liquid Crystal 57
5.1.2 Variation of Dye-Doped Cholesteric Liquid Crystal Reflection Band under Weak UV Irradiation 60
5.1.3 Optically Tunable Lasing Emission in Dye-Doped Cholesteric Liquid Crystals under a Weak UV Irradiation 62
5.1.4 Optically Transformable Lasing Emissions in Dye-Doped Cholesteric Liquid Crystal under Strong UV Irradiation 64
5.2 Observation of Cholesteric Liquid Crystal Microdroplet with a Long Pitch 68
5.3 Optically Tunable Lasing Emission in a Dye-Doped Cholesteric Liquid Crystal Microdroplet Cell 70
5.3.1 Energy Threshold of Dye-Doped Cholesteric Liquid Crystal Microdroplets 70
5.3.2 Optically Tunable Lasing Emission in Dye-Doped Cholesteric Liquid Crystal Microdroplet under Weak UV Irradiation 74
5.3.3 All-Optically Controllable Lasing Emission in Dye-Doped Cholesteric Liquid Crystal Microdroplet under Strong UV Irradiation 77

Chapter 6 Conclusion and Future Works 80

List of References 82

1.J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 1995).
2.J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, The photonic band edge laser: a new approach to gain enhancement, J. Appl. Phys. 75, 1896-1899 (1994).
3.V. I. Kopp, B. Fan, H. K. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals, Opt. Lett. 23, 1707-1709 (1998).
4.A.Munoz, P. Palffy-Muhoray, and B. Taheri, Ultraviolet lasing in cholesteric liquid crystals, Opt. Lett. 26, 804-806 (2001).
5.L. S. Goldberg and J. M. Schnur, “Tunable internal-feedback liquid crystal laser, U.S. patent 3,771,065 (Novemer 6, 1973).
6.M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, Mirrorless Lasing in a Dye-Doped Ferroelectric Liquid Crystal, Adv. Mater. (Weinheim, Ger.) 14, 306-309 (2002).
7.Seiichi Furumi, Shiyoshi Yokoyama, Akira Otomo, and Shinro Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals, Appl. Phys. Lett. 82, 16-18 (2003).
8.Andro Chanishvili, Guram Chilaya, and Gia Petriashvili, “Phototunable lasing in dye-doped cholesteric liquid crystals, Appl. Phys. Lett. 83, 5353-5355 (2003).
9.Seiichi Furumi, Shiyoshi Yokoyama, Akira Otomo, and Shinro Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device, Appl. Phys. Lett. 84, 2491-2493 (2004).
10.W. Cao, A. Munoz, P. Palffy-Muhoray and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II, Nature Mat. 1, 111-113 (2002).
11.K. G. Sullivan, and D. G. Hall, “Radiation in spherically symmetric structures, I. The coupled-amplitude equations for vector spherical waves. Phys. Rev. A 50, 2701–2707 (1994).
12.D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators, J. Opt. Soc. Am. B 10, 644-657 (1993).
13.G. N. Burlak, “Optical radiation from coated microsphere with active core, Phys. Lett. A 299, 94-101 (2002).
14.Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators, Opt. Lett. 29, 424-426 (2004).
15.A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector, Appl. Phys. Lett. 75, 3051-3053 (1999).
16.J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties, IEEE J. Sel. Top. Quant. 11, 476-484 (2005).
17.J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “Low-threshold two-dimensional annular Bragg lasers, Opt. Lett. 29, 2641-2643 (2004).
18.M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets, Opt. Express 18, 26995-27003 (2010).
19.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
20.S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992).
21.Letter from F. Reintzer to O. Lehmann, reported by H. Kelker, Mol. Cryst. Liq. Cryst. 21, 1 (1973)
22.B. Bahadur, Liquid Crystals-Application and Uses Vol. 1 (World Scientific Publishing, Singapore, 1990).
23.I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).
24.P. G. de Gennes, Calcul de la distorsion d'une structure cholesterique par un champ magnetique, Sol. State Commun. 6, 163 (1968).
25.R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals, Appl. Phys. Lett. 12, 281-282 (1968).
26.L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, (Springer-Verlag, New York, 1994).
27.Jonathan P. Dowling, “The photonic band edge laser: A new approach to gain enhancement, J. Appl. Phys. 75, 1896-1899 (1994).
28.V. I. Koop, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals, Opt. Lett. 23, 1707-1709 (1998).
29.Amon Yariv and Pochi Yeh, Optical Waves in Crystals (John Wiley & Sons Press, New York, 1984).
30.M. Ruetschi, P. Grutter, J. Funfschilling, H.-J. Guntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy, Science 265, 512-514 (1994).
31.A. J. Pidduck, S. D. Haslam, G. P. Bryan-Brown, R. Bannister, I. D. Kitely, “Control of liquid crystal alignment by polyimide surface modification using atomic force microscopy, Appl. Phy. Lett. 71, 2907-2909 (1997).
32.T. Rasing, and I. Muˇseviˇc, Surfaces and Interfaces of Liquid Crystals (Springer, Berlin, Heidelberg, New York, 2004).
33.B.E.A. Saleh, M.C Teich, Fundamentals of Photonics (WILEY, New York, 1991).
34.沈柯, 雷射原理教程 (亞東書局, 1990).
35.H. Kogelnik, and C. V. Shank, “Coupled‐Wave Theory of Distributed Feedback Lasers J. Appl. Phys. 43, 2327–2335 (1972).
36.V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures Prog. Quantum Electron. 27, 369-416 (2003).
37.H. Bouas-Laurent and H. DÜRR, “Organic photochromism, Pure Appl. Chem. 73, 639-665 (2001).
38.邱顯堂,“化工技術第八卷第六期,150.
39.I. Shimizu, H. Kokado, E. Inoue, “Photoreversible Photographic Systems. VI. Reverse Photochromism of 1,3,3-Trimethylspiro[indoline-2,2′-benzopyran]-8′-carboxylic Acid, Bull. Chem. Soc. Jpn. 42, 1730-1734 (1969).
40.楊博智,含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,國立成功大學化工研究所碩士論文,(2003)。
41.Y. Hirshberg, “Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model, J. Am. Chem. Soc. 78, 2304-2312 (1956).
42.楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化工研究所博士論文,(2007)。
43.R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal, Appl. Phys. Lett. 82, 3593-3595 (2003)
44.陳怡君,對膽固醇液晶雷射輸出大範圍調控之研究,國立成功大學物理研究所碩士論文,(2005)。
45.M. Irie, “Diarylethenes for Memories and Switches, Chem. Rev. 100, 1685-1716 (2000).
46.Eds. H. -S. Kitzerow and Ch. Bahr, Chirality in Liquid Crystals (Springer, New York, 2001).
47.S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant, Opt. Express 18, 9496–9503 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊