跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳財保
研究生(外文):Tsai-BauWu
論文名稱:Polycarbazole / Fullerene之有機太陽能電池研究
論文名稱(外文):Studies of polycarbazole / fullerene-based organic photovoltaic devices
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:有機高分子太陽能電池低能隙熱退火相分離
外文關鍵詞:Organic solar cellsLow bandgapThermal annealingPhase separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究高分子-富勒烯為主動層之塊材異質接面(Bulk heterojunction,BHJ)有機太陽能電池,探討主動層薄膜的熱退火温度對太陽能電池光伏特性的影響。主動層選用高分子poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'- benzothiadiazole)] (PCDTBT)為電子供體,選用二種富勒烯的衍生物為電子受體,分別為 [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) 和[6,6]-phenyl-C71-butyric acid ethyl ester (PC71BM),使用氯苯溶劑製備混合溶液,利用旋轉塗佈方式製作主動層薄膜,再施以不同的熱退火温度,利用吸收光譜儀、光致螢光光譜儀、原子力顯微鏡、X光繞射光譜儀、及拉曼光譜儀研究主動層薄膜之光學特性與微結構,進而探討與元件光伏特性的關連性。實驗結果顯示PCDTBT:PC61BM 與PCDTBT:PC71BM主動層薄膜分別在60 ℃與130 ℃的溫度退火處理後,能夠獲得最佳的太陽光吸收能力,因此產生較多的激子。隨著退火溫度增加,此兩組主動層薄膜之光致螢光光譜強度均呈下降的趨勢,建議激子分離機率可有效增加。利用原子力顯微鏡觀察薄膜表面形態,當熱退火溫度超過130 ℃,薄膜發生明顯的相分離。利用X光繞射儀分析結晶結構,發現即使經過熱退火處理,均未觀察到任何繞射峰,指出主動層為非晶相結構。同時,藉由拉曼光譜儀分析發現主動層薄膜經過熱退火後,在1445 cm-1的拉曼振動有變寬的趨勢,波峯位置則有紅外移現象,建議主動層薄膜呈較無序的微結構特徵。PCDTBT:PC61BM與PCDTBT:PC71BM主動層分別在60 ℃及130 ℃進行退火處理可獲致最佳的元件電性,其元件短路電流、開路電壓、填充因子、光電轉換效率分別為7.11 mA/cm2、0.89 V、0.55、3.48 % 與8.90 mA/cm2、0.88 V、0.55、4.35 %。總結,我們發現可藉由熱退火溫度對PCDTBT-富勒烯主動層薄膜微結構進行改善,使得施體/受體材料間形成較佳的相分離結構,可有效增加激子濃度並降低再復合機率,搭配電特性分析達到優化元件效能的目的。

In this study, the effects of the annealing temperature of active layers on the photovoltaic characteristics of polymer–fullerene bulk heterojunction (BHJ) solar cells were investigated. To prepare the active layers of the BHJ solar cells, poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,
5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) was used as the electron donor, and two kinds of fullerene derivatives [6,6-phenyl C61-butyric acid methyl ester (PC61BM) and 6,6-phenyl C71-butyric acid methyl ester (PC71BM)] were used as the electron acceptor. The PCDTBT:fullerene blending films subjected to different annealing temperatures were investigated by absorption spectroscopy, photoluminescence (PL) spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy analyses. The results revealed that the PCDTBT:PC61BM and PCDTBT:PC71BM active layers annealed at 60 and 130 °C, respectively, exhibited the highest absorption of sunlight and thus produce more excitons. The intensity of the PL spectra of the films weakened with increased annealing temperature, suggesting that the probability of exciton dissociation can be effectively enhanced. Simultaneously, the AFM images showed that the phase separation within the films were evident at annealing temperatures higher than 130 °C. Even after the annealing process, the XRD results revealed that the active layer films were amorphous because no diffraction peak was observed. With increased annealing temperature, the half bandwidth of the Raman peak at approximately 1445 cm-1 gradually broadened and produced a red shift in the peak position, suggesting that the microstructures within the films were more disordered. For the PCDTBT:PC61BM-based solar cells, the highest photovoltaic performance was observed when the active layers were annealed at 60 °C. By contrast, for the PCDTBT:PC71BM-based solar cells, the optimized annealing temperature was approximately 130 °C. The highest short-circuit current density, open circuit voltage, fill factor, and power conversion efficiency of the PCDTBT:PC61BM device were 7.11 mA/cm2, 0.89 V, 0.55, and 3.48 %. Those for the PCDTBT:PC71BM device were 8.90 mA/cm2, 0.88 V, 0.55, and 4.35%, respectively. In conclusion, by controlling the annealing temperature of the films, good phase separation between the donor/acceptor materials can be achieved to increase the number of excitons and reduce the possibility of exciton recombination, as well as optimize the performance of the organic solar cells.

中文摘要………………………………………………………………I
Abstract III
致謝 V
目錄……………………………………………………VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池材料種類介紹 4
1-3 應用於有機太陽能電池之高分子材料 8
1-3.1 共軛高分子發展簡介 8
1-3.2 MDMO-PPV : PCBM 系統之太陽能電池[12] 9
1-3.3 P3HT : PCBM 系統之太陽能電池 10
1-3.4 PCDTBT : PCBM 系統之太陽能電池 12
1-4 研究動機 15
第二章 有機太陽能電池簡介與原理 21
2-1 有機太陽能電池之元件結構發展 21
2-1.1 單層結構 21
2-1.2 雙層異質接面結構 22
2-1.3 單層混摻異質接面結構 23
2-1.4 串接結構 24
2-2 有機太陽能電池之工作原理 25
2-2.1 太陽光的頻譜 25
2-2.2 有機太陽能電池工作機制 26
2-2.3 有機太陽能電池等效電路 28
2-2.4 有機太陽能電池各項參數介紹 31
第三章 實驗方法和步驟 40
3-1 實驗材料 40
3-2 元件製作流程 42
3-2.1 主動層溶劑的配置 42
3-2.2 元件製程 42
3-3 實驗分析儀器 45
3-3.1 元件電性量測儀器 45
3-3.2 紫外-可見光光譜儀(吸收光譜儀) 45
3-3.3 原子力顯微鏡 46
3-3.4 X光繞射光譜儀 46
3-3.5 光致螢光光譜儀 46
3-3.6 微拉曼光譜儀 47
第四章 主動層薄膜在不同熱退火溫度變化之有機太陽能電池特性研究 51
4-1 前言 51
4-2 主動層在不同熱退火溫度下之元件光電特性 53
4-3 紫外光-可見光光譜分析 54
4-4 原子力顯微鏡表面形態分析 55
4-5 X光繞射光譜分析 57
4-6 光致螢光光譜分析 59
4-7 微拉曼光譜分析 60
第五章 總結與未來展望 86
5-1 總結 86
5-2 未來展望 90
參考文獻 91


[1] P. Peumans, S. Uchida, S. R. Forrest, “ Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , Nature , 2003, 425, p.p. 158-162

[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “ Solar cell efficiency tables(version 34) , Prog. Photovolt: Res. Appl. 2009, 17, p.p. 320-326

[3] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, “ Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-film Solar Cells , Prog. Photovolt.: Res. Appl., 2003, 11, p.p. 225-230

[4] B. O’Regan, M. Gratzel, “ A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , Nature, 1991, 353, p.p. 737-740

[5] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, “ Solid-state dye-sensitized mesoporous TiO2 sollar cells with high photon-to-electron conversion efficiencies , Nature, 1998, 395, p.p. 583-585

[6] www.nrel.gov/ncpv/images/efficiency_chart.jpg

[7] K. J. Less, E. G. Wilson, “ Intrinsic photoconduction and photoemission in polyethylene , J. Phys. C: Solid State Phys., 1973, 6, p.p. 3110-3120

[8] H. Shirakawa, S. Ikeda, “ Infrared Spectra of Poly(acetylene) , Polymer Journal, 1971, 2, p.p. 231-244

[9] H. Shirakwa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “ Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , J. Chem. Soc., Chem. Commun., 1977, p.p. 578-580

[10] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “ Electrical Conductivity in Doped Polyacetylene , Phys. Rev. Lett., 1977, 39, p.p. 1098-1101

[11] F. Wudl, “ The chemical properties of bulkminsterfullerene (C60) and the birth and infancy of fulleroids , Acc. Chem. Res., 1992, 25, p.p. 157-161

[12] S. Gunes, H. Neugebauer, N. S. Sariciftci, “ Conjugated Polymer-Based Organic Solar Cells , Chem. Rev., 2007, 107, p.p. 1324-1338

[13] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “ 2.5% efficient organic plastic solar cells , Appl. Phys. Lett., 2001, 78, p.p. 841-843

[14] H. Hoppe, N. S. Sariciftci, “ Organic solar cells: An overview , J. Mater. Res., 2004, 19, p.p. 1924-1945

[15] M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Krol, J. C. Hummelen, H. P. Van, R. A. J. Janssen, “ Efficient Methano[70]fullernen/MDMO-PPV Bulk Heterojunction Photovoltaic Cells , Angew. Chem. Int. Ed., 2003, 42, p.p. 3371-3375

[16] F. Padinger, R. S. Rittberger, N. S. Sariciftic, “ Effects of Postproduction Treatment on Plastic Solar Cells , Adv. Funct. Mater., 2003, 13, p.p. 85-88

[17] D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, “ Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites , Nanotechnology, 2004, 15, p.p. 1317-1326

[18] J.Huang, G. Li, Y. Yang, “ Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends , Appl. Phys. Lett., 2005, 87, p.p. 112105(3)

[19] G. Li, V. Shortriya, Y. Yao, Y. Yang, “ Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , J. Appl. Phys., 2005, 98, p.p. 043704(5)

[20] V. Shortriya, J. Quyang, R. J. Tseng, G. Li, Y. Yang, “ Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin film , Chem. Phys. Lett., 2005, 411, p.p. 138-143

[21] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “ High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , Nature Materials, 2005, 4, p.p. 864-868

[22] M. Al-Ibrahim, H. -K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, S. Sensfuss, “ The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells , Org. Electron., 2005, 6, p.p. 65-77

[23] N. Blouin, A. Michaud, M. Leclerc, “ A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells , Adv. Mater., 2007, 19, p.p. 2295-2300

[24] S. Wakim, S. Beaupre, N. Blouin, B. -R. Aich, S. Rodman, R. Gaudiana, Y. Tao, M. Leclerc, “ High efficient organic solar cells based on a poly(2,7-carbazole) derivative , J. Mater. Chem., 2009, 19, p.p. 5351-5358

[25] S. H. Park, A. Roy, S. Bezupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100% , Nature Photonics, 2009, 3, p.p. 297-303

[26] S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc, A. J. Heeger, “ A Thermally Stable Semiconducting Polymer , Adv. Mater., 2010, 22, p.p. 1253-1257

[27] Y. Sun, J. Y. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, “ Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer , Adv. Mater., 2011, 23, p.p. 1679-1683

[28] M. N. Kamalasanan, S. Chandra, “ Sol-gel synthesis of ZnO thin films , Thin Solid Film, 1996, 288, p.p. 112-115

[29] T. Y. Chu, S. Alem, S. W. Tsang, S. C. Tse, S. Wakim, J. Lu, G. Dennler, D. Waller, R. Gaudiana, Y. Tao, “ Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance , Appl. Phys. Lett., 2011, 98, p.p. 253301(3)

[30] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, “ Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells , Adv. Mater., 2011, 23, p.p. 4636-4643

[31] C. H. Peters, I. T. S.-Quintana, J. P. Kastrop. S. Beaupre, M. Leclerc, M. D. McGehee, “ High Efficiency Polymer Solar Cells with Long Operating Lifetimes , Adv. Energy Mater., 2011, 1, p.p. 491-494

[32] S. Alem, T. Y. Chu, S. C. Tse, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Belanger, D. Desilets, S. Beaupre, M. Leclerc, S. Rodman, D. Waller, R. Gaudiana, “ Effect of mixed solvents on PCDTBT:PC70BM based solar cells , Org. Electron., 2011, 12, p.p. 1788-1793

[33] Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, “ Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , Adv. Mater., 2011, 23, p.p. 2226-2230

[34] Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuna, G. F. Burkhard, J. A. Bartelt, A. Salleo, M. F. Toney, M. D. McGehee, “ Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells , Adv. Energy Mater., 2011, 1, p.p. 954-962

[35] J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, G. C. Bazan, “ Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer , J. Am. Chem. Soc., 2011, 133, p.p. 8416-8419

[36] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, “ Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells , Adv. Mater., 2011, 23, p.p. 4636-4643

[37] K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. J. Berry, D. C. Olson, “ Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers , Adv. Energy Mater., 2011, 1, p.p. 813-820

[38] D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O O. Park, A. J. Heeger, “ Enhanced Power Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters , Adv. Energy Mater., 2011, 1, p.p. 766-770

[39] D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O O. Park, A. J. Heeger, “ Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles , Angew. Chem. Int. Ed., 2011, 50, p.p.5519-5523

[40] D. H. Wang, J. S. Moon, J. Seifter, J. Jo, J. H. Park, O O. Park, A. J. Heeger, “ Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells , Nano Lett., 2011, 11, p.p. 3163-3168

[41] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, “ Plastic Solar Cells , Adv. Funct. Mater., 2011, 11, p.p. 15-26

[42] H. Kallmans, M. Pope, “ Photovoltaic effect in organic crystals , J. Chem. Phys, 1958, 30, p.p. 585-586

[43] J. M. Nunzi, “ Organic photovoltaic materials and devices , C. R. Physique, 2002, 3, p.p 523-542

[44] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, J. Heeger, “ Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , Science, 1995, 270, p.p. 1789-1791

[45] G. Dennler, H. -J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N. S. Sariciftci, “ Enhanced spectral coverage in tandem organic solar cells , Appl. Phys. Lett., 2006, 89, p.p. 073502(3)

[46] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. -Q. Nguyen, M. Dante, A. J. Heeger, “ Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , Science, 2007, 13, p.p. 222-225

[47] S. Sista, M. -H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, Y. Yang, “ Highly Efficient Tandem Polymer Photovoltaic Cells , Adv. Mater., 2010, 22, p.p. 380-383

[48] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-
effects

[49] Dipl. Ing. Klaus Petritsch, “ Organic Solar Cell Architectures , PhD Theis, 2000

[50] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T.
Rispens, “ Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells , J. Appl. Phys., 2003, 94, p.p. 6849(6)

[51] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz,
M. T. Rispens, L. Sanchez and J. C. Hummelen, “ Origin of the open circuit voltage of plastic solar cells , Adv. Fun. Mater., 2001,11, p.p. 374-380

[52] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “ Thermally
Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , Adv. Funct. Mater., 2005, 15, p.p. 1617-1622

[53] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “ “Solvent Annealing Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes , Adv. Funct. Mater., 2007, 17, p.p. 1636-1644

[54] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, “ Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells , Adv. Funct. Mater., 2005, 15, p.p. 1193-1196

[55] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. N. Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, “ Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells , J. Am. Chem. Soc., 2008, 130, p.p. 732-742

[56] S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc, A. J. Heeger, “ A Thermally Stable Semiconducting Polymer , Adv. Mater., 2010, 22, p.p. 1253-1257

[57] X. Lu, H. Hlaing, D. S. Germack, J. Peet, W. H. Jo, D. Andrienko, K. Kremer, B. M. Ocko, “ Bilayer order in a polycarbazole-conjugated polymer , Nature Communications, 2012, p.p. 1-7

[58] J. F. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, M. Giles, M. Heeney, I. McCulloch, “ Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers , Phys. Rev. B., 2006, 74, p.p. 115318(12)

[59] H. L. Cheng, J. W. Lin, M. F. Jang, F. C. Wu, W. Y. Chou, M. H. Chang, C. H. Chao, “ Long-Term Operations of Polymeric Thin-Film Transistors: Electric Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene), Macromolecules, 2009, 42, p.p. 8251-8259

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top