跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃馨瑩
研究生(外文):Hsin-YingHuang
論文名稱:氧化鋅奈米顆粒的製備與發光特性探討
論文名稱(外文):Preparation of ZnO nanoparticles and their Photoluminescence
指導教授:徐旭政謝文峰謝文峰引用關係
指導教授(外文):Hsu-Cheng HsuHsu-Cheng Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:氧化鋅奈米粒子時間解析光譜激子複合
外文關鍵詞:ZnO nanoparticlesTRPLexciton recombination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
以溶膠凝膠法合成氧化鋅奈米粒子,我們可以控制合成出來的氧化鋅一次粒子粒徑大小。藉由不同溶液莫爾濃度的成長參數,使其氧化鋅一次粒子大小由6.5nm調變到12.8nm。X光繞射結果顯示奈米粒子為六方纖鋅礦結構,且隨著粒徑變小,繞射譜線線逐漸寬化。我們以時間積分及時間解析光激發光光譜來研究其發光的機制。室溫下,光激發光光譜具有兩個發光峰:紫外發光是由於自由激子複合;綠色發光則來自於表面缺陷,並且會隨著粒徑減小而發光強度有所增強。由於量子侷限效應的關係,室溫光激發光光譜顯示隨著粒徑的變小,激子放光的能量峰值也會產生藍位移。我們量測直徑12.8奈米氧化鋅奈米粒子的變溫光激發光光譜,低溫下放光的主因為束縛激子復合。隨著溫度上升,激子的放光會紅移。對於時間解析光譜的結果來說,束縛激子的生命期包含了兩個因素:快速衰減歸因於與表面相關的複合過程,而慢衰減則是來自於束縛激子的輻射生命期,隨著溫度升高,自由激子主宰整個放光過程。與溫度相關的時間解析光譜可用來觀察自由激子和束縛激子復合的機制。
ZnO nanoparticles with controlled sizes produced by sol-gel method are studied by means of time-integrated as well as time-resolved photoluminescence (TRPL) spectroscopy. X-ray diffraction results reveal the nanoparticles are with hexagonal structure and the particle size can be tuned from 6.5 to 12.8 nm by varying growth parameters. At room temperature, there are two emission peaks positioned in the UV and visible range. The UV emission is ascribed to the main contribution of free excitons recombination; while, the green emission comes from surface defects, which is strongly enhanced with size reduction. Room-temperature photoluminescence spectra show a blueshift of excitonic emission with the decreasing particle size, which is attributed to quantum confinement effect. The temperature dependence of exciton lifetimes with the size of 12.8 nm deduced from the TRPL results contain two components: the fast decay is attributed to surface trapping of free exciton, whereas the slow decay mainly represents for the radiative lifetime of bound/free exciton.
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章序論 1
1-1 前言 1
1-2 研究動機 5
第二章基礎理論與文獻回顧 6
2-1 氧化鋅簡介 6
2-1-2 氧化鋅的發光機制 9
2-2光譜量測原理 16
2-2-1光致激發光譜原理 16
2-2-2時間解析光譜量測原理 21
2-3奈米粒子與量子點 25
2-3-1表面效應 25
2-3-2量子侷限效應 26
第三章實驗參數與研究方法 27
3-1 氧化鋅試片製備流程 27
3-1.1 矽基板清洗步驟 27
3-1.2 氧化鋅試片製備 28
3.2 量測儀器設備 30
3-2.1 X 光繞射量測 (XRD) 31
3-2.2場發射掃瞄式電子顯微鏡(FE-SEM) 31
3-2.3穿透式電子顯微鏡(TEM) 31
3-2.4 紫外光/可見光吸收光譜(UV/VIS)分析 32
3-2.5顯微光致螢光發光光譜 32
3-2.6變溫光激發螢光光譜 33
3-2.7時間解析光譜 34
第四章結果與討論 35
4-1 場發射掃瞄式電子顯微鏡分析 35
4-2 X光繞射圖譜分析 38
4-3氧化鋅之穿透式電子顯微鏡分析 41
4-4氧化鋅不同顆粒大小在室溫下的光激螢光光譜 44
4-5粒徑12.8NM的氧化鋅顆粒變溫PL圖譜 46
4-6粒徑12.8NM氧化鋅顆粒的時間解析 48
4-7 12.8NM氧化鋅顆粒在低溫10K下,針對不同波長的時間解析光譜 52
4-8 四種不同尺寸大小的氧化鋅顆粒,在低溫5K下的時間解析 53
第五章結論 57
5-1總結 57
5-2未來展望 58
參考文獻 59
附錄: 紫外光/可見光吸收光譜(UV/VIS)分析 66
1.K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method, Chemical Physics Letters 409, 208-211 (2005).
2.U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98, 041301 (2005).
3.E. T. N. H. Nickel, Zinc Oxide—A Material for Micro- and Optoelectronics Applications, (Springer, The Netherlands, 2005).
4.M. T. Swihart, Vapor-phase synthesis of nanoparticles, Current opinion in colloid & interface science 8, 127-133 (2003).
5.T. Tani, L. Mädler, and S. E. Pratsinis, Homogeneous ZnO nanoparticles by flame spray pyrolysis, Journal of Nanoparticle Research 4, 337-343 (2002).
6.E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi, and M. Poliakoff, Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles, The Journal of Supercritical Fluids 37, 209-214 (2006).
7.R. M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, and R. M. Penner, A hybrid electrochemical/chemical synthesis of zinc oxide nanoparticles and optically intrinsic thin films, Chemistry of Materials 10, 1120-1129 (1998).
8.L. Yanhong, W. Dejun, Z. Qidong, Y. Min, and Z. Qinglin, A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy, The Journal of Physical Chemistry B 108, 3202-3206 (2004).
9.T. Omata, Y. Tani, S. Kobayashi, K. Takahashi, A. Miyanaga, Y. Maeda, and S. Otsuka-Yao-Matsuo, Ultraviolet electroluminescence from colloidal ZnO quantum dots in an all-inorganic multilayer light-emitting device, Applied Physics Letters 100, 061104 (2012).
10.T. Toyama, H. Takeuchi, D. Yamaguchi, H. Kawasaki, K. Itatani, and H. Okamoto, Solution-processed ZnO nanocrystals in thin-film light-emitting diodes for printed electronics, Journal of Applied Physics 108, 084302 (2010).
11.Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates, Applied Physics Letters 83, 4719 (2003).
12.H.-M. Cheng,W.-F. Hsieh, High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode, Energy & Environmental Science 3, 442 (2010).
13.Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew Chem Int Ed Engl 47, 2402-2406 (2008).
14.T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Z. Cao, Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency, Advanced Materials 19, 2588-2592 (2007).
15.V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, ' Colloidal ZnO quantum dots in ultraviolet pillar microcavities,' Optics Express 16, 9791 (2008).
16.S. Ju,K. Lee, 'Low Operating Voltage Single ZnO Nanowire Field-Effect Transistors Enabled by Self-Assembled Organic Gate Nanodielectrics,' Nano Lett. 5, 2281 (2005).
17.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292, 1897-1899 (2001).
18.H. Amekura, N. Umeda, Y. Sakuma, N. Kishimoto, and C. Buchal, Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation, Applied Physics Letters 87, 013109 (2005).
19.X. Xiang, X. T. Zu, S. Zhu, Q. M. Wei, C. F. Zhang, K. Sun, and L. M. Wang, ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing, Nanotechnology 17, 2636-2640 (2006).
20.G.Kiliani, R Schneider, D.Litvinov, D.Gerthsen, M.Fonin, U.Rudiger, A. Leitenstorfer, R.Bratschitsch, 'Ultraviolet photoluminescence of ZnO quantum dots sputtered at room-temperature,' Optics express 19, 1641 (2011).
21.Z. D. Fu, Y. S. Cui, S. Y. Zhang, J. Chen, D. P. Yu, S. L. Zhang, L. Niu, and J. Z. Jiang, Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size, Applied Physics Letters 90, 263113 (2007).
22.K. Suzuki, H. Kondo, M. Inoguchi, N. Tanaka, K. Kageyama, and H. Takagi, Optical properties of well-crystallized and size-tuned ZnO quantum dots, Applied Physics Letters 94, 223103 (2009).
23.I. Musa, F. Massuyeau, L. Cario, J. L. Duvail, S. Jobic, P. Deniard, and E. Faulques, Temperature and size dependence of time-resolved exciton recombination in ZnO quantum dots, Applied Physics Letters 99, 243107 (2011).
24.A. Chernikov, S. Horst, T. Waitz, M. Tiemann, and S. Chatterjee, Photoluminescence Properties of Ordered Mesoporous ZnO, The Journal of Physical Chemistry C 115, 1375-1379 (2011).
25.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98, 041301-041301-041103 (2005).
26.A. El-Yadouni, A. Boudrioua, J. C. Loulergue, V. Sallet, and R. Triboulet, Growth and optical characterization of ZnO thin films deposited on sapphire substrate by MOCVD technique, Optical Materials 27, 1391-1395 (2005).
27.L. Liu, and J. H. Edgar, Substrates for gallium nitride epitaxy, Materials Science and Engineering: R: Reports 37, 61-127 (2002).
28.Z. G. L. W. S. Hu, R. X. Wu, Y.-F.Chen, W. Ji, T. Yu, D. Feng, Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al 2 O 3 ZnO/Al 2 O 3 and its ultrahigh frequency resonance, Appl. Phys. Lett. 71, 28 (1997).
29.J. C. W. T Yao, Physics and Applications of Semiconductor Quantum Structures (Bristol and Philadelphia, IOP, 2001).
30.B. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Physical Review B 37, 10244-10248 (1988).
31.Y. Chen, D. M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization, Journal of Applied Physics 84, 3912 (1998).
32.S. Zhang, S. H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Physical Review B 63 (2001).
33.H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, Variation of light emitting properties of ZnO thin films depending on post-annealing temperature, Materials Science and Engineering: B 102, 313-316 (2003).
34.B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Bound exciton and donor–acceptor pair recombinations in ZnO, physica status solidi (b) 241, 231-260 (2004).
35.K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68, 403 (1996).
36.B. Lin, Z. Fu, Y. Jia, and G. Liao, Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions, Journal of The Electrochemical Society 148, G110 (2001).
37.E. G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc oxide, Journal of Applied Physics 49, 1188 (1978).
38.H. S. Kang, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films, Journal of Applied Physics 95, 1246 (2004).
39.X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2, Physica B: Condensed Matter 388, 145-152 (2007).
40.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature, Applied Physics Letters 70, 2230 (1997).
41.謝嘉民,賴一凡,林永昌,枋志堯, 光激發螢光量測的原理、架構及應用 (奈米通訊, 2005 年).
42.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning, Nanotechnology 15, 320-323 (2004).
43.F. Liu, P. J. Cao, H. R. Zhang, C. M. Shen, Z. Wang, J. Q. Li, and H. J. Gao, Well-aligned zinc oxide nanorods and nanowires prepared without catalyst, Journal of Crystal Growth 274, 126-131 (2005).
44.A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties, Journal of Crystal Growth 282, 131-136 (2005).
45.C. H. Ho, Y. H. Liang, and Y. J. Chen, Band-Edge Transitions of a Metallorganic Chemical Vapor Deposited ZnO Film on Si by Thermoreflectance Spectroscopy, Electrochemical and Solid-State Letters 9, G312 (2006).
46.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics 79, 7983 (1996).
47.L. Schmidt-Mende, and J. L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Materials Today 10, 40-48 (2007).
48.盧廷昌、王興宗, 半導體雷射導論, 五南文化事業出版社(2008).
49.Y.-F. L. Jia-Min Shieh, Yong-Chang Lin, Jr-Yau Fang, 奈米通訊.
50.H. Yu, S. Lycett, C. Roberts, and R. Murray, Time resolved study of self‐assembled InAs quantum dots, Applied Physics Letters 69, 4087 (1996).
51.A. Kobitski, K. Zhuravlev, H. Wagner, and D. Zahn, Self-trapped exciton recombination in silicon nanocrystals, Physical Review B 63 (2001).
52.K. S. Seol, M. Fujimaki, Y. Ohki, and H. Nishikawa, Temperature dependence of the lifetime of 4.3-eV photoluminescence in oxygen-deficient amorphous SiO2 Physical Review B 59, 1590 (1999).
53.M. Gurioli, S. Sanguinetti, and M. Henini, Dynamic quantum-confined stark effect in self-assembled InAs quantum dots, Applied Physics Letters 78, 931 (2001).
54.M. Strassburg, M. Dworzak, H. Born, R. Heitz, A. Hoffmann, M. Bartels, K. Lischka, D. Schikora, and J. Christen, Lateral redistribution of excitons in CdSe/ZnSe quantum dots, Applied Physics Letters 80, 473-475 (2002).
55.M. Eriksson, Time Resolved Micro Photoluminescence of InGaN/GaN Quantum Dots, Master thesis, Royal Institute of Technology (KTH), (2011).
56.Y. Wang, and N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry 95, 525-532 (1991).
57.盧永坤, 奈米科技概論(初版), 滄海書局 (2005).
58.A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art, The Journal of Physical Chemistry C 111, 14628-14637 (2007).
59.D.-H. Chen, and C.-J. Chen, Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions, Journal of Materials Chemistry 12, 1557-1562 (2002).
60.H. M. Cheng, K. F. Lin, H. C. Hsu, C. J. Lin, L. J. Lin, and W. F. Hsieh, Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles, The Journal of Physical Chemistry B 109, 18385-18390 (2005).
61.H. C. Hsu, C. S. Cheng, C. C. Chang, S. Yang, C. S. Chang, and W. F. Hsieh, Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates, Nanotechnology 16, 297-301 (2005).
62.Y. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34, 149-154 (1967).
63.W. M. Kwok, A. B. Djurišić, Y. H. Leung, W. K. Chan, and D. L. Phillips, Time-resolved photoluminescence from ZnO nanostructures, Applied Physics Letters 87, 223111 (2005).
64.Q. X. Zhao, L. L. Yang, M. Willander, B. E. Sernelius, and P. O. Holtz, Surface recombination in ZnO nanorods grown by chemical bath deposition, Journal of Applied Physics 104, 073526 (2008).
65.V. A. Fonoberov, and A. A. Balandin, Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes, Applied Physics Letters 85, 5971 (2004).
66.B. Guo, Z. Ye, and K. S. Wong, Time-resolved photoluminescence study of a ZnO thin film grown on a (100) silicon substrate, Journal of Crystal Growth 253, 252-257 (2003).
67.G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, Size dependent carrier recombination in ZnO nanocrystals, Applied Physics Letters 97, 131909 (2010).
68.F.-Y. Jen, Y.-C. Lu, C.-Y. Chen, H.-C. Wang, C. C. Yang, B.-p. Zhang, and Y. Segawa, Temperature-dependent exciton dynamics in a ZnO thin film, Applied Physics Letters 87, 252117 (2005).
69.G. Bunea, W. Herzog, M. Unlu, B. Goldberg, and R. Molnar, Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy, Applied Physics Letters 75, 838-840 (1999).
70.S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al[sub 2]O[sub 3](0001) by metalorganic vapor phase epitaxy, Applied Physics Letters 80, 1924 (2002).
71.T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, Correlation between grain size and optical properties in zinc oxide thin films, Applied Physics Letters 81, 1231 (2002).
72.M. Stoehr, S. Juillaguet, M. Marshall, and J. G. Wen, Quantum confinement effect of ZnO nanocrystallites embedded in In2O3 films, Journal of Applied Physics 104, 084906 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top