跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊哲皓
研究生(外文):Che-HaoYang
論文名稱:利用可見光至紅外光光譜系統量測仿體及皮膚生理參數
論文名稱(外文):Quantification of the optical properties of tissue phantom and skin properties by using a UV to NIR spectrum system
指導教授:曾盛豪曾盛豪引用關係
指導教授(外文):Sheng-Hao Tseng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:79
中文關鍵詞:生醫光學吸收散射光學物質
外文關鍵詞:BiophotonicsMedicalphotonicsAbsorptionScatteringOptical properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
我們發展了一套光學系統可以對光學物質量化生理參數濃度及其吸收係數,系統利用了可見光的偵測器和不可見光的偵測器拓展波長的偵測範圍從可見光到紅外光波段,我們的系統不只可以量測光學物質的穿透頻譜也可以量測反射頻譜,量測穿透頻譜我們可以得到物質本身最不同頻率光的吸收,量測反射頻譜我們可以利用演算法去量化物質內參數的濃度,我們利用了兩套光傳波理論分別是擴散理論跟快速蒙地卡羅,由我們的結論在不同的吸收與散射的仿體中,我們可以選擇使用不同的光傳波理論去進行運算來達到最佳化的效果。
We constructed a spectroscopy system to quantify the absorption of scattering properties in the VIS-NIR range by employing an InGaAs detector and a silicon detector. With our system, we were able to acquire transmission and reflectance spectra from pure absorbing and turbid media in the wavelength range 500 and 1300 nm. The biological chromophore concentrations were estimated by fitting a mathematical model derived from diffusion theory and Scaling Monte Carlo. A scaling Monte Carlo method has developed to calculate diffuse reflectance. Our result suggest that diffusion reflectance in different place can change between Diffusion theory and Scaling Monte Carlo.
Table of contents
Abstract I
摘要 II
Acknowledgement III
Table of contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1-1 Introduction 1
Chapter2 Theoretical Background 4
2-1 Tissue optics 4
2-1-1 Absorption coefficient 4
2-1-2 Scattering coefficient 5
2-2 Beer's law 6
2-2-1Different concentration 7
2-2-2 Different path length 8
2-3 Monte Carlo Modeling of Light Transport in Multi-layered Tissues 9
2-4 Scaling method for fast Monte Carlo simulation 14
2-5 Radiative Transfer Equation and Diffusion Theory 15
2-5-2 The RTE in the Diffusion Approximation 17
2-5-3 The Diffusion Equation 18
Chapter 3 Method and Material 19
3-1 Experimental setup 19
3-2 Detector analysis and pre-processing 21
3-3 Phantom reflectance measuring and calibration 24
3-4 Mathematical modeling of spectra fitting 28
Chapter 4 Results and Discussion 31
4-1 Analysis the linearity of the response of the detectors 31
4-2 Measure absorption of Lipid and Water 33
4-2-1 CCD (silicon detector) 33
4-2-2 InGaAs detector 44
4-2 Verification between Monte Carlo and Scaling Monte Carlo 49
4-3 Compare the Reflectance spectrum between scaling Monte Carlo, Wang’s Monte Carlo and Diffusion theory 53
4-4 The Result between Diffusion theory and Scaling Monte Carlo after spectrum fitting the measured spectrum. 63
Chapter 5 Conclusion and Future work 75
5-1 Conclusion 75
5-2 Future work 75
Reference 77

1.A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, Journal of Physics D: Applied Physics 38, 2543 (2005).
2.I. S. Saidi, S. L. Jacques, and F. K. Tittel, Mie and Rayleigh modeling of visible-light scattering in neonatal skin, Appl. Opt. 34, 7410-7418 (1995).
3.E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range, Journal of Biomedical Optics 11, 064026-064029 (2006).
4.T. L. Troy, and S. N. Thennadil, Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm, Journal of Biomedical Optics 6, 167-176 (2001).
5.R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin, Journal of Photochemistry and Photobiology B: Biology 16, 127-140 (1992).
6.I. Nishidate, Y. Aizu, and H. Mishina, Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation, Journal of Biomedical Optics 9, 700-710 (2004).
7.S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements, Journal of Biomedical Optics 9, 511-522 (2004).
8.C. B. M. S. Kelly Km, and et al., DEscription and analysis of treatments for port-wine stain birthmarks, Archives of Facial Plastic Surgery 7, 287-294 (2005).
9.J. T. Bruce, O. S. Lars, K. F. Mathias, J. M. Steen, W. Pius, S. Beverly, and T. Yona, A mathematical model for light dosimetry in photodynamic destruction of human endometrium, Physics in Medicine and Biology 41, 223 (1996).
10.G. Zonios, and A. Dimou, Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties, Opt. Express 14, 8661-8674 (2006).
11.R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers, Opt. Lett. 27, 246-248 (2002).
12.R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy, Journal of Biomedical Optics 10, 054004-054006 (2005).
13.R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, Selective photothermolysis of lipid-rich tissues: A free electron laser study, Lasers in Surgery and Medicine 38, 913-919 (2006).
14.R. Nachabe, B. H. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. Sterenborg, Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm, Biomed Opt Express 1, 1432-1442 (2010).
15.Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy, J Biomed Opt 13, 024012 (2008).
16.A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy, J Biomed Opt 11, 044005 (2006).
17.J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo, Cancer research 69, 2919-2926 (2009).
18.A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, In vivo measurement of the local optical propertiesof tissue by use of differential path-length spectroscopy, Opt. Lett. 29, 1087-1089 (2004).
19.A. Amelink, A. van der Ploeg van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. Sterenborg, Monitoring PDT by means of superficial reflectance spectroscopy, J Photochem Photobiol B 79, 243-251 (2005).
20.T. J. Farrell, M. S. Patterson, and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Med Phys 19, 879-888 (1992).
21.E. Battistelli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, Use of two scaling relations in the study of multiple-scattering effects on the transmittance of light beams through a turbid atmosphere, J. Opt. Soc. Am. A 2, 903-911 (1985).
22.R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, Condensed Monte Carlo simulations for the description of light transport, Appl. Opt. 32, 426-434 (1993).
23.G. M. Palmer, and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms, Appl. Opt. 45, 1062-1071 (2006).
24.Q. Liu, and N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media, J. Opt. Soc. Am. A 24, 1011-1025 (2007).
25.A. Kienle, and M. S. Patterson, Determination of the optical properties of turbid media from a single Monte Carlo simulation, Physics in Medicine and Biology 41, 2221 (1996).
26.N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues, Opt Express 18, 6811-6823 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊