跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭育瑋
研究生(外文):Yu-WeiKuo
論文名稱:掩埋式電極之高亮度氮化鎵發光二極體之研製
論文名稱(外文):Study on High Brightness GaN Light Emitting Diodes with Embedded Electrodes
指導教授:洪瑞華
指導教授(外文):Ray-Hua Horng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:122
中文關鍵詞:氮化鎵發光二極體埋入電極雷射剝離技術表面粗化
外文關鍵詞:GaNLEDembedded electrodelaser lift-offroughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文主要是藉由設計不同結構之無電極遮光製程結構,配合高反射鏡面、雙面粗化技術、晶圓貼合技術以及雷射剝離技術,製備具高效率、高亮度以及高散熱之無電極遮光發光二極體元件,探討不同結構設計下元件之光電與熱的特性,並透過模擬驗證元件表面發光強度分布,最後與一般傳統水平製程發光二極體作比較。

無電極遮光氮化鎵發光二極體在研製過程中,在適當參數下使用表面粗化與高反射鏡面,提供較佳的發光效率,使得無電極遮光效果應加顯著,並且透過結構設計與基板置換,使得元件在高電流注入下,加速散熱速度並降低元件效率下降效應,避免電極遮光問題,大幅度提升元件亮度。

本實驗架構中,我們特別比較:原始藍寶石基板之發光二極體/具p-GaN粗化、垂直式無電極遮光結構發光二極體/具高反射鏡面矽基板、翅膀型無電極遮光結構發光二極體/具高反射鏡面矽基板三種結構。特性分析部分,在100mA三種結構元件在-5V,漏電流皆小於-2uA條件下,翅膀型和垂直式無電極遮光結構之元件輸出功率分別為74 mW和57.7mW,比一般水平結構的47.7mW分別增加約55.1%和21%;表面溫度量測結果得知,翅膀型無與垂直式電極遮光結構的表面溫度分為58.1°C和76.7°C,而一般水平發光二極體的表面溫度約為84.86°C。
實驗結果顯示,垂直式與翅膀型無電極遮光製程在高電流操作下,皆可有效提升元件發光效率,雷射剝離後並保有良好磊晶膜特性,其中以翅膀型無電極遮光製程結構為最佳結構設計。

In this study, various structural designs of embedded electrodes GaN LEDs with high reflection mirror on Si have been fabricated by the double-side roughness, laser lift-off and wafer bonding technology. Moreover, the optoelectronic performances, thermal analyses and light distribution simulations on the surface of these embedded electrodes LEDs were investigated and compared with conventional LEDs.

For the fabrication of embedded electrodes structure GaN LED, the good optoelectronic performance can be achieved by optimizing of the surface roughness and high reflection mirror processes. The electrode-shading loss was eliminated by designing LEDs structures. Furthermore, substrate transfer was used to reduce the droop efficiency and enhance the thermal dissipation.

Various LEDs structures in this thesis include conventional lateral LED, wing type embedded electrodes LED and vertical imbedded electrodes LED. At an injection current of 100 mA, the output powers of wing type, vertical and conventional lateral LEDs were 74, 57.7 and 47.7 mW, respectively. The output powers for the wing type and vertical LEDs have 55.1% and 21% enhancement compared to conventional lateral LED, respectively. It reveals that the wing type LED has a significant improvement in the light extraction. For the wing type, vertical and conventional lateral LEDs, the surface temperatures were measured to be 58.1, 76.7 and 84.86 °C, respectively. It indicates that the wing type and vertical LEDs with embedded electrodes structures exhibit high performance in light extraction and keep the good quality of epitaxial layer after laser lift-off, especially for the wing type embedded electrodes structure.

摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 序論 1
1-1 前言 1
1-2 發光二極體之歷史回顧與發展 2
1-3 現今發展趨勢 5
1-3-1 傳統水平式發光二極體 5
1-3-2 覆晶式發光二極體 5
1-3-3 垂直式發光二極體 6
1-4 研究動機 7
1-5 論文結構發展簡介 8
1-6 論文架構 9
第二章 發光二極體理論模型簡介 10
2-1 光電特性 10
2-2 寄生電阻的量測與估算 11
2-3 熱效應對發光二極體之影響 12
2-4 金屬與半導體接面之影響 13
2-4-1 金屬/半導體接觸之原理 13
2-4-2 歐姆接觸之原理 14
2-5 傳輸線模型原理 15
2-6 發光二極體光取出原理 16
2-7 雷射剝離技術 19
2-8 全方位反射鏡的使用 21
2-9 發光二極體的基本參數 22
第三章 研究方法 25
3-1 前言 25
3-2 傳統結構之氮化鎵發光二極體製作 25
3-2-1 氮化鎵試片之磊晶結構 25
3-2-2 試片之清洗 25
3-3 平台與透明導電層之製作 26
3-4 熱退火處理 27
3-5 電極製作 28
3-6 平坦化製程 28
3-6-1 保護層之製作 29
3-6-2 側向電極之製作 29
3-7 翅膀型無電極遮光之製程開發 30
3-7-1 具全方位反射鏡面之熱傳導基板之製作 30
3-7-2 晶片貼合技術之製作 31
3-7-3 雷射剝離藍寶石基板之製作 31
3-7-4 表面粗化之製作 32
3-7-5 以蝕刻技術製作翅膀型無電極遮光之水平電極 32
3-7-6 打線區之製作 33
3-8 垂直式無電極遮光之製程開發 33
3-9 元件切割、打線與封裝 34
3-10 分析儀器原理 35
3-10-1 光電特性量測系統 35
3-10-2 積分球量測系統 35
3-10-3 IR紅外熱像分析系統 36
3-10-4 IS量測系統 37
3-10-5 N&K光學量測系統 37
3-10-6 原子力顯微鏡 37
3-10-7 掃描式電子顯微鏡 38
3-10-8 X光繞射儀 39
第四章 結果與討論 40
4-1 前言 40
4-2 反射鏡面探討 40
4-2-1 一般金屬鏡面之分析 40
4-2-2 絕緣層於全方位鏡面之分析 41
4-3 氧化銦錫與P型氮化鎵之歐姆接觸特性研究 42
4-4 平坦化結構之分析 43
4-5 雷射剝離氮化鎵試片之分析雷射 44
4-5-1 能量與雷射剝離氮化鎵表面分析 44
4-5-2 原子力顯微鏡對雷射剝離氮化鎵試片之分析 45
4-5-3 X-ray 繞射分析儀與雷射剝離後氮化鎵試片之分析 46
4-6 表面粗化製程之分析 46
4-6-1 n型氮化鎵磊晶層表面粗化之探討 46
4-6-2 表面粗化對於元件取光的影響 47
4-7 低折射係數黏著層之選用特性 48
4-7-1 膠材特性 48
4-8 元件特性分析 48
4-8-1 元件形貌探討 48
4-8-2 元件之電極遮蔽率 50
4-8-3 元件結構模擬與實際出光圖比較 50
4-8-4 IV特性曲線 51
4-8-5 發光強度分析 52
4-8-6 EL電性分析 53
4-8-7 封裝前、後之光輸出功率與光電轉換效率 54
4-8-8 封裝前、後之外部量子效率與效率下降的關係 56
4-8-9 表面溫度之量測 58
4-8-10 熱阻量測之分析 59
4-8-11 發光光場圖形分析 60
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 63
參考文獻 64


[1]T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, InGaN/GaN tunnel-injection blue light-emitting diodes, Electron Devices, IEEE Transactions on, vol. 49, pp. 1093-1095, 2002.
[2]D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J. W. Cook, Jr., J. F. Schetzina, G. Cantwell, and W. C. Harsch, High-brightness green light-emitting diodes, Electronics Letters, vol. 30, pp. 1178-1180, 1994.
[3]G. E. Stillman, V. M. Robbins, and N. Tabatabaie, III-V compound semiconductor devices: Optical detectors, Electron Devices, IEEE Transactions on, vol. 31, pp. 1643-1655, 1984.
[4]H. Sugawara, M. Ishikawa, and G. Hatakoshi, High-efficiency InGaAlP/GaAs visible light-emitting diodes, Applied Physics Letters, vol. 58, pp. 1010-1012, 1991.
[5]H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, High-brightness InGaAlP green light-emitting diodes, Applied Physics Letters, vol. 61, pp. 1775-1777, 1992.
[6]D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. Defevere, and F. A. Kish, High-brightness AlGaInP light emitting diodes, Proceedings of the IEEE, vol. 85, pp. 1752-1764, 1997.
[7]F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes, Applied Physics Letters, vol. 64, pp. 2839-2841, 1994.
[8]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes, Electronics Letters, vol. 32, pp. 132-134, 1996.
[9]J. I. Pankove and P. E. Norris, Luminescence From GaN MIS Diodes., Radio Corporation of America Review, vol. 33, pp. 377-382, 1972.
[10]S. Yoshida, S. Misawa, and S. Gonda, Epitaxial growth of GaN/AlN heterostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 250-253, 1983.
[11]T. Sugahara, H. Sato, M. S. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Japanese Journal of Applied Physics Part 2-Letters, vol. 37, pp. L398-L400, Apr 1998.
[12]A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, Performance of High-Power AlInGaN Light Emitting Diodes, physica status solidi (a), vol. 188, pp. 15-21, 2001.
[13]D. A. Zakheim, I. P. Smirnova, I. V. Roznanskii, S. A. Gurevich, M. M. Kulagina, E. M. Arakcheeva, G. A. Onushkin, A. L. Zakheim, E. D. Vasil'eva, and G. V. Itkinson, High-power flip-chip blue light-emitting diodes based on AlGaInN, Semiconductors, vol. 39, pp. 851-855, 2005.
[14]B. N. Aditya and N. Gupta, Material selection methodology for gate dielectric material in metal-oxide-semiconductor devices, Materials & Design, vol. 35, pp. 696-700, Mar 2012.
[15]E. Letts, T. Hashimoto, M. Ikari, and Y. Nojima, Development of GaN wafers for solid-state lighting via the ammonothermal method, Journal of Crystal Growth, vol. 350, pp. 66-68, Jul 2012.
[16]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Unusual properties of the fundamental band gap of InN, Applied Physics Letters, vol. 80, pp. 3967-3969, May 2002.
[17]施敏 原著,張俊彥 譯著,半導體元件物理與製程技術,第三版,高立圖書有限公司,台北,台灣,pp.192-206,2000。
[18]郭浩中,賴芳儀,郭守義 著,LED原理與應用 Principles and Applications of Light-emitting Diode,第二版,五南圖書出版股份有限公司,台北,台灣,pp.73-97,2012。
[19]Y. Xi and E. F. Schubert, Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, Applied Physics Letters, vol. 85, pp. 2163-2165, Sep 2004.
[20]S. Todoroki, M. Sawai, and K. Aiki, Temperature distribution along the striped active region in high&-power GaAlAs visible lasers, Journal of Applied Physics, vol. 58, pp. 1124-1128, 1985.
[21]A. Schmitz, A. Ping, M. Khan, Q. Chen, J. Yang, and I. Adesida, Metal contacts to n-type GaN, Journal of Electronic Materials, vol. 27, pp. 255-260, 1998.
[22]V. M. Bermudez, Study of oxygen chemisorption on the GaN(0001)-(1x1) surface, Journal of Applied Physics, vol. 80, pp. 1190-1200, Jul 1996.
[23]莊達人,VLSI製造技術,高立書局,第12-18頁,2002。
[24]D. K. Schroder, Semiconductor Material and Device Characterization: Wiley-Interscience, 2006.
[25]Z. L. Li, X. D. Hu, C. Ke, R. J. Nie, X. H. Luo, X. P. Zhang, T. J. Yu, B. Zhang, C. Song, Z. J. Yang, Z. Z. Chen, and G. Y. Zhang, Preparation of GaN-based cross-sectional TEM specimens by laser lift-off, Micron, vol. 36, pp. 281-284, 2005.
[26]史光國 著,半導體發光二極體及固體照明,全華圖書股份有限公司,台北,台灣,pp.10-82,2010。
[27]M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, Optical patterning of GaN films, Applied Physics Letters, vol. 69, pp. 1749-1751, 1996.
[28]W. S. Wong, T. Sands, and N. W. Cheung, Damage-free separation of GaN thin films from sapphire substrates, Applied Physics Letters, vol. 72, pp. 599-601, 1998.
[29]R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, On the thermal decomposition of GaN in vacuum, physica status solidi (a), vol. 26, pp. 353-357, 1974.
[30]C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D. K. Gaskill, Thermal stability of GaN thin films grown on (0001) Al2O3, (011-2) Al2O3 and (0001) Si 6H-SiC substrates, Journal of Applied Physics, vol. 76, pp. 236-241, 1994.
[31]M. E. Lin, B. N. Sverdlov, and H. Morkoc, Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy, Applied Physics Letters, vol. 63, pp. 3625-3627, 1993.
[32]W. Wong, A. Wengrow, Y. Cho, A. Salleo, N. Quitoriano, N. Cheung, and T. Sands, Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off, Journal of Electronic Materials, vol. 28, pp. 1409-1413, 1999.
[33]S. R. Jeon, Y. H. Song, H.J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions, Applied Physics Letters, vol. 78, pp. 3265-3267, 2001.
[34]T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, Indium tin oxide contacts to gallium nitride optoelectronic devices, Applied Physics Letters, vol. 74, pp. 3930-3932, 1999.
[35]S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact, Photonics Technology Letters, IEEE, vol. 16, pp. 1002-1004, 2004.
[36]P. Shyi-Ming, T. Ru-Chin, F. Yu-Mei, R. C. Yeh, and H. Jung-Tsung, Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts, Photonics Technology Letters, IEEE, vol. 15, pp. 649-651, 2003.
[37]P. N. Arne Roos, P. Nostell, D. Ronnow, and A. Roos, Single-beam integrating sphere spectrophotometer for reflectance andstransmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples, Review of Scientific Instruments, vol. 70, p. 2481, 1999.
[38]T. Ding, A. P. J. Middelberg, T. Huber, and R. J. Falconer, Far-infrared spectroscopy analysis of linear and cyclic peptides, and lysozyme, Vibrational Spectroscopy, vol. 61, pp. 144-150, 2012.
[39]陳隆建,發光二極體之原理與製程,2006。
[40]高至鈞,汪建民,材料分析,中國材料科學學會,台灣,1998。
[41]陳立俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電微鏡學,國家實驗研究院儀器科技研究中心,台灣,1990。
[42]鄧建龍、姚潔宜、張茂男,X-ray Diffraction Utilized in the Semiconductor Industry, Nano Communication, p. 15, 4, 2008.
[43]T. Chen, Y. Wang, P. Xiang, R. Luo, M. Liu, W. Yang, Y. Ren, Z. He, Y. Yang, W. Chen, X. Zhang, Z. Wu, Y. Liu, and B. Zhang, Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes, Applied Physics Letters, vol. 100, p. 241112, 2012

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊