跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳伊星
研究生(外文):I-HsingChen
論文名稱:具分佈式布拉格反射鏡氮化鎵發光二極體之螢光粉光色轉換研究
論文名稱(外文):Investigation of Phosphor Color Conversion in GaN-based Light-emitting Diodes with Distributed Bragg Reflector
指導教授:李欣縈
指導教授(外文):Hsin-Ying Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:氮化鎵發光二極體分佈式布拉格反射鏡螢光粉光色轉換效率
外文關鍵詞:gallium nitridelight-emitting diodesdistributed Bragg reflectorphosphorcolor conversion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
本研究主要探討螢光粉於具分佈式布拉格反射鏡氮化鎵二極體上之光色轉換,經由藍光激發螢光粉光色轉換過程形成近似紅光及綠光。本研究的元件結構由上而下分別為分佈式布拉格反射鏡、藍光發光二極體、螢光粉混膠層及銀反射鏡。
在此結構中藍光發光二極體為紅、綠色螢光粉混膠的激發源,分別激發紅色與綠色螢光粉混膠,藉由光色轉換過程形成近似紅光及綠光,並利用分佈式布拉格反射鏡當作濾光片(針對450 nm)達到過濾(反射)藍光之效果,並進而增加照射於螢光粉上之藍光,最後與底部銀金屬全反射鏡將可增加螢光粉混膠層激發機會,藉此提高光色轉換效率之優點。從實驗結果得知在相同螢光粉混膠厚度下時,新結構元件之紅色及綠色螢光粉發射光譜面積比傳統螢光粉混膠塗佈元件分別提升了18.2 %及12.5 %。且在相同色度座標下時,新結構下紅色及綠色元件之光色轉換效率分別為60.8 %及53 %,會比傳統紅色及綠色傳統螢光粉混膠塗佈元件提升約2.5 %左右。
雖然如此,仍有少部分之藍光從分佈式布拉格反射鏡與藍光發光二極體側壁逃逸出來,故為了得到更純的單色紅、綠光,將利用一層薄薄的螢光粉混膠層塗佈於新結構元件上,這螢光粉混膠層將不只抑制住逃逸出之藍光,並可以再次提升紅色及綠色螢光粉發射光譜面積,色度座標將分別達到紅色(0.53,0.29)和綠色 (0.43,0.47)。

In the research of phosphor color conversion in gallium nitride (GaN) based LED, which had distributes bragg reflector (DBR) consisting of TiO2 and SiO2 dielectric pairs was proposed and realized as the new structure for approximately monochromatic light. Then, we could obtain red/green light by color conversion from the red/green phosphor slurry layer, which was pumped by blue light. This research structure was composed of DBR, GaN-based LED, phosphor slurry layer, and Ag mirror in the top down sequence.
In proposed structure, the red/green phosphor slurry layer was pumped by blue light from GaN-based LED. Then, we could obtain red/green light by color conversion. Furthermore, the DBR, which was designed with high reflectivity at 450 nm, was deposited on the topside of GaN-based LED as the optical filter. It could not only filter out blue light, but also reflect blue light. By using the advantage of reflecting blue light through DBR, it allowed more blue light on the phosphor slurry layer. With the top DBR and the bottom Ag mirror, it could improve the chance for excitation and further achieve higher color conversion efficiency. The experimental results showed that the new structure demonstrated enhancements of red/green phosphor electro-luminescent area by 18.2 % and 12.4 % when compared with the traditional structure which had the same thickness of phosphor slurry layer. The color conversion efficiency of new structure with red/green slurry layer were 60.8 % and 53 %. The new structure had an overall of 2.5 % when compared with the traditional structure that has the same CIE coordinate.
However, there was still some blue light emitted from the top side of DBR and the side wall of the LED. Therefore, to obtain more intensive and pure monochromatic red and green light source, another red and green phosphor thin layer was coated on the top of the LEDs with DBR. The phosphor was excited by the blue light escaped from the DBR and the side wall of the LEDs and emitted additional red or green light, at the same time reduced the escaped blue light. The chromaticity coordinates of thus fabricated GaN LEDs with double red and green phosphor layers on the top and at the bottom was (0.53,0.29) and (0.43,0.47), respectively.

摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 簡介 1
1.1 發光二極體的發展 1
1.2 研究動機與目的 2
參考文獻 5
第二章 原理 10
2.1 發光二極體發光原理 10
2.2 螢光粉發光原理 11
2.3 發光二極體能量轉換過程與效率 12
2.4 反射鏡 13
2.4-1 金屬反射鏡 13
2.4-2 分佈式布拉格反射鏡 14
2.5 CIE色度座標 16
2.6 量測方法原理與儀器 17
2.6-1 光激發光光譜儀 17
2.6-2 紫外/可見光/近紅外光分光光譜儀 18
2.6-3 積分球 18
參考文獻 20
第三章 製程設備與元件結構、製作 27
3.1 製程設備 27
3.1-1 電子束蒸鍍系統 27
3.1-2 光學監控系統 28
3.2 元件結構、製作 29
3.2-1 元件結構 29
3.2-2 氮化鎵發光二極體製程步驟 29
3.2-3 頂部分佈式布拉格反射鏡之製作 31
3.2-4 底部紅、綠色螢光粉混膠之塗佈 32
3.2-5 底部金屬反射鏡之製作 33
參考文獻 34
第四章 實驗量測分析與結果討論 41
4.1 分佈式布拉格反射鏡之量測 41
4.1-1 使用材料之分析 41
4.1-2 分佈式布拉格反射鏡之分光光譜儀量測 42
4.2 螢光粉混膠層之材料分析 43
4.2-1 矽膠材料分析 43
4.2-2 螢光粉材料分析 43
4.3 傳統結構混膠旋轉塗佈之元件特性量測結果 44
4.3-1 元件電激發光光譜分析 44
4.3-2 元件之CIE色度座標圖 45
4.4 具分佈式布拉格反射鏡之元件特性量測結果 46
4.4-1 元件電流-電壓的關係 47
4.4-2 元件電激發光光譜分析 47
4.4-3 元件之CIE色度座標圖 48
4.4-4 元件之光色轉換效率 49
4.4-5 改善後發光二極體元件 50
參考文獻 52
第五章 結論 68
第一章
[1] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “ White Light Emission of Monolithic Carbon-Implanted InGaN–GaN Light-Emitting Diodes, IEEE Photonics Technol. Lett. , 18, 2029 (2006).
[2] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “ Effects of Built-In Polarization on InGaN-GaN Vertical-Cavity Surface-Emitting Lasers, IEEE Photonics Technol. Lett., 18, 7 (2006).
[3] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with Solid State Lighting Technology, IEEE J. Sel. Top. Quantum Electron. , 8, 310 (2002).
[4] K. Murakami, T. Taguchi, and M. Yoshino, “White Illumination Characteristics of ZnS-Based Phosphor Materials Excited by InGaN-based Ultraviolet Light-Emitting Diode, Proc. SPIE, 4079, 112 (2000).
[5] Y. Uchida, T. Setomoto, T. Taguchi, Y. Nakagawa, K. Miyazaki, in: I.-W. Wu, H. Uchiike (Eds.), “ Characteristics of High-Efficient InGaN-Based White LED Lighting Proc. SPIE, 4079, 120 (2000).
[6] N. Holonyak and S. F. Bevaqua, “ Coherent (Visible) Light Emission from Ga(As1–xPx) Junctions, Appl. Phys. Lett. , 1, 82 (1962).
[7] S. Nakamura and G. Fasol, “ The Blue Laser Diode: GaN Based Light Emitters and Lasers, Spinger, Berlin (1997).
[8] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “ Light Emitting Device Having A Nitride Compound Semiconductor and A Phosphor Containing A Garnet Fluorescent Material, United States Patent, US 5998925 (1999).
[9] S. Nakamura, T. Mukai, and M. Senoh, “ Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes, Appl. Phys. Lett. , 64, 1687 (1994).
[10] A. A. Stelur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “ Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices, United States Patent, US 6685852 B2 (2004).
[11] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “ Optimization of Mulitichip White Solid State Lighting Source with Four or More LEDs, Proc. SPIE 4445, 148 (2001).
[12]B. Hou, H. Rao, and J. Li, “ Methods of Increasing Luminous Efficiency of Phosphor Converted LED Realized by Conformal Phosphor Coating’’, J. Disp. Technol. , 5, 57 (2009).
[13]J. Yum, S. Y. Seo, S. Lee, and Y. E. Sung, “ Y3Al5O12:Ce0.05 Phosphor Coatings on Gallium Nitride for White Light Emitting Diodes, “ J. Electrochem. Soc. , 150, H47 (2003).
[14]R. Hu, X. Luo, and S. Liu, “ Study on The Optical Properties of Conformal Coating Light-Emitting Diode by Monte Carlo Simulation, IEEE Photonics Technol. Lett. , 23, 1673 (2011).
[15]J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “ Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup, ’’ Jpn. J. Appl. Phys. , 44, L649 (2005).
[16]R. Yu, S. Jin, S. Cen, and Pei Liang, “ Effect of The Phosphor Geometry on The Luminous Flux of Phosphor-Converted Light-Emitting Diodes, ’’ IEEE Photonics Technol. Lett. , 22, 1765 (2010).
第二章
[1] A. Zukauskas, “Introduction to Solid-State Lighting, John Wiley & Sons, New York (2002).
[2] E. F. Schubert, “ Light Emitting Diodes, Cambridge University Press, Cambridge (2003).
[3] 郭浩中、賴芳儀、郭守義, LED 原理與應用 (五南圖書出版公司, 2009)。
[4] P. Goldberg, “ Luminescence of Inorganic Solids, Academic Press, New York (1966).
[5] D. A. Skoog and J. J. Leary, “ Principles of Instrumental Analysis 5th ed. , Harcourt Brace College Pub. (1998).
[6] 劉如熹、健源,白光發光二極體製作技術 (全華科技圖書公司, 2005)。
[7] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D.Dorman, A.Ekimov, S. Herko, and B. Kulkarni, “Quantum-Confined-Atom-Based Nanophosphors for Solid State Lighting, Proc. SPIE 5187, 133 (2004).
[8] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “ High-Power Phosphor-Converted Light-Emitting Diodes Based on III- Nitrides, IEEE J. Sel. Top. Quantum Electron. , 8, 339 (2002).
[9] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “ Phosphor Materials and Combinations for Illumination-Grade White pcLEDs, Proc. SPIE 5187, 115 (2004).
[10] C. S. Chang, S. J. Chang, Y. K. Su, W. S. Chen, C. F. Shen, S. C. Shei, and H. M. Lo, “ Nitride Based Power Chip with Indium-Tin-Oxide p-Contact and Al Back-Side Reflector, Jpn. J. Appl. Phys. , 44, 2462 (2005).
[11] Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “ Efficiency Enhancement of InGaN/GaN Light-Emitting Diodes with A Back-Surface Distributed Bragg Reflector, J. Electron. Mater. , 32, 1523 (2003).
[12]S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “ Nitride-Based LEDs with A Hybrid Al Mirror + TiO2/SiO2 DBR backside reflector, J. Lightw. Technol. , 26, 17, 3131 (2008).
[13] C. H. Lin, J. Y. Tsai, C. C. Kao, H. C. Kuo, C. C. Yu, J. R. Lo, and K. M. Leung, “ Enhanced Light Output in InGaN-Based Light-Emitting Diodes with Omnidirectional One-Dimensional Photonic Crystals, Jpn. J. Appl. Phys. , 45, 1591 ( 2006).
[14] 李正中, 薄膜光學與鍍膜技術 (藝軒圖書出版社, 1999)。
[15] C. Wilmsen, H. Temkin, and L. A. Coldren, “ Vertical Cavity Surface Emitting Lasers Design, Fabrication, Characterization, and Applications, Cambridge University Press, Cambridge, 203 (1998).
[16] A. Yariv, “ Quantum Electronics, 3rd ed. , John Wiley & Sons, New York (1989).
[17] R. W. G. Hunt, “ Measuring Colour 2nd ed. , “ Ellis Horwood, London (1995).
第三章
[1] 李正中, 薄膜光學與鍍膜技術 (藝軒圖書出版社, 1999)。
[2] H. A. Macleod, “ Monitoring of Optical Coatings , Appl. Optics, 20, 82 (1981)
[3] E. Ritter, “ Deposition of Oxide film by Reactive Evaporation , J. Vac. Sci. Technol. , 3, 225 (1966)
[4] H. W. Lehmann and K. Frick, “ Optimizing Deposition Parameters of Electron Beam Evaporated TiO2 Films, Appl. Optics, 27, 4920 (1988)
第四章
[1] Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “ Efficiency Enhancement of InGaN/GaN Light-Emitting Diodes with a Back-Surface Distributed Bragg Reflector, J. Electron. Mater. , 32, 12 (2003).
[2] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “ Analysis of High-Power Packages for Phosphor-Based White-Light-Emitting Diodes , Appl. Phys. Lett. , 86, 243505 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊