跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思穎
研究生(外文):Sih-YingChen
論文名稱:開發適應性光學之多通道控制器
論文名稱(外文):Development of Multichannel Controller for Adaptive Optics
指導教授:陳顯禎
指導教授(外文):Shean-Jen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:54
中文關鍵詞:適應性光學系統多通道輸入及多通道輸出系統鑑別線性二次化積分控制
外文關鍵詞:adaptive optics systemMIMOsystem identificationLQI control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
適應性光學系統(adaptive optics system,AOS)主要功能在於修補內外在干擾所導致的光學像差,使影像信號能逼近光學成像系統的繞射極限;為了幫助光學系統在修正像差的同時,又不影響原本系統的正常運作速度,因此發展即時的適應性光學系統一直都是大家努力追求的目標。
本論文的目的主要在於開發合適的多通道控制系統,並將實驗室自製的即時Shack-Hartmann波前感測器(Shack-Hartmann wavefront sensor,SHWS)以及可調變式聚焦鏡(deformable mirror,DM)結合在一起,形成完整的即時閉迴路控制的適應性光學系統。在控制系統的架構上,將SHWS所量測到的Zernike多項式係數回授產生誤差信號,接著利用線性二次型積分(linear quadratic integral,LQI)控制理論得到最佳的狀態回授增益矩陣,然後再由狀態回授控制律計算出控制電壓去驅動DM,以修正波前受到擾動後所造成的光學像差。為了得到SHWS與DM之間的數學模型,在實驗上先對開路系統本身做多通道輸入及多通道輸出(multichannel input multichannel output,MIMO)的系統鑑別,收集輸入的驅動電壓以及相對應輸出的Zernike多項式係數之後,接著傳送到電腦端去作離線分析,藉由數值次狀態空間系統鑑別方法(numerical subspace state space system identification)可以得到系統的狀態模型。最後利用LQI理論計算出最佳的控制器參數,然後由電腦模擬確定能夠收斂後,再將參數輸入進現場可編程輯閘陣列(field-programmable gate array,FPGA),使整體閉迴路控制系統能夠實現於獨立的FPGA模組。
Adaptive optics system (AOS) consists of three parts: wavefront sensing, wavefront correction, and system control. The function of AOS is to compensate the wavefront aberrations induced by internal and external disturbances; hence the performance of the optical system can be improved to achieve the diffraction limit. In order not to interrupt the operation velocity as compensating the aberrations, a real-time AOS is a demand.
The purpose of this thesis aims at the development of an appropriate multichannel control system which can associate our lab-made Shack-Hartmann wavefront sensor (SHWS) with the deformable mirror (DM), and then complete a real-time close-loop AOS. In the control architecture, the Zernike polynomial coefficients measured by the SHWS were fed back to create error signals, and then the optimal state feedback gain matrix based on a linear quadratic integral (LQI) control theory were derived to drive the DM for the purpose of eliminating the optical aberrations. In order to obtain a mathematical model between the SHWS and the DM, we adopt a multi-input and multi-output (MIMO) system identification method, called numerical subspace state space system identification (N4SID), to acquire a state space model according to real input and output information. With the help of this model, an off-line analysis for the system can be utilized to calculate the optimal gain parameter by the LQI theory and a simulation was tested to ensure the convergence of the control loop. At last, the matrix parameters of the control system are delivered from a personal computer to a field-programmable gate array (FPGA) module and the overall real-time close-loop AOS is implemented by the FPGA module individually.
Abstract......I
摘要......II
Acknowledgement......III
List of Figures......VI
List of Tables......IX

Chapter 1 Introduction......1
1-1 Background......1
1-2 Motivation......2
1-3 Outline......3
Chapter 2 Adaptive Optics System......4
2-1 Wavefront sensing......4
2-1-1 Interferometry......5
2-1-2 Shack-Hartmann wavefront sensor......7
2-2 Wavefront reconstruction......10
2-2-1 Zernike polynomial......10
2-2-2 Model reconstruction method......13
2-3 Wavefront correction......15
2-3-1 Deformable mirror......15
2-3-2 Multichannel driver......17
2-4 Real-time adaptive optics system......19
2-4-1 SHWS with FPGA-based wavefront reconstruction algorithm......20
2-4-2 System control based on FPGA......23
Chapter 3 System Identification......25
3-1 Procedures and configuration......25
3-2 Results and discussions......29
Chapter 4 AOS Multichannel Controller......33
4-1 Linear quadratic intergral (LQI) control......33
4-2 Simulation results......38
4-3 Experimental results......41
4-3-1 System configuration......41
4-3-2 Static disturbance......42
4-3-3 Dynamic disturbance......45
Chapter 5 Conclusions and Future Works......48
References......50

[1] R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
[2] H. W. Babcock, “The possibility of compensating astronomical seeing, Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[3] J. M. Beckers, “Adaptive Optics for Astronomy: Principles, Performance, and Applications, Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
[4] N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars, Sci. 262, 1390-1394 (1993).
[5] P. Kern, “Adaptive optics prototype system for infrared astronomy. I. System description, Prof. SPIE 1271, 243-251 (1990).
[6] R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications, J. Opt. Soc. Am. A 19, 753-758 (2002).
[7] M. J. Booth, “Adaptive optics in microscopy, Phil. Trans. R. Soc. A 365, 2829-2843 (2007).
[8] J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples, Curr. Opin. Biotechnol. 20, 106-110 (2009).
[9] A. Greenaway and J. Burnett, Industrial and Medical Applications of Adaptive Optics (IOP, 2004).
[10] 洪喧騰,具適應性光學之雷射精密微加工系統,成功大學工程科學研究所碩士論文,2008。
[11] J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley & Sons Inc., 2006).
[12] L. F. Rodríguez-Ramos, T. Viera, J. V. Gigante, F. Gago, G. Herrera, Á. Alonso, and N. Descharmes, “FPGA adaptive optics system test bench, Prof. SPIE 5903, 59030D (2005).
[13] K. Kepa, D. Coburn, J. C. Dainty, and F. Morgan, “High speed optical wavefront sensing with low cost FPGAs, Meas. Sci. Rev. 8, 87-93 (2008).
[14] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics 7th ed. (Wiley, 2007).
[15] D. Malacara, Optical Shop Testing (Wiley, 1992).
[16] S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack-Hartmann wavefront sensor, Opt. Las. Technol. 39, 262-267 (2007).
[17] http://www.edmundoptics.com
[18] B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing, J. Refract. Surg. 17, S573-S577 (2001).
[19] M. Born and E. Wolf, Principles of Optics 7th ed. (Cambridge University Press, 1970).
[20] G.-M. Dai, “Model wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions, J. Opt. Soc. Am. 13, 1218-1225 (1996).
[21] 林聖硯,即時波前感測系統之研發,成功大學工程科學研究所碩士論文,2011。
[22] http://www.analog.com/static/imported-files/data_sheets
/ADV7180.pdf
[23] G.-M. Dai, “Model wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions, J. Opt. Soc. Am. 13, 1218-1225 (1996).
[24] 張智強,適應性光學之系統鑑別,中央大學機械工程所碩士論文,2004。
[25] J.-N. Juang, Applied System Identification (Prentice Hall, 1994).
[26] L. Ljung, System Identification Toolbox for Use with MATLAB (Mathworks, 2001).
[27] P. V. Overschee and B. D. Moor, “N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems, Automatica 30, 75-93 (1994).
[28] E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics, Opt. Express 11, 1056-1069 (2003).
[29] J. B. Stewart, A. Diouf, Y. Zhou, and T. Bifano, “Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control, J. Opt. Soc. Am. A 24, 3827-3833 (2007).
[30] B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics, Opt. Commun. 282, 4467-4474 (2009).
[31] P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye, J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[32] V. C. Klema, “The singular value decomposition: its computation and some applications, IEEE Trans. Automat. Contr. AC-25, 164-176 (1980).
[33] B. D. Rao, and K. S. Arun, “Model based processing of signals: a state space approach, Proc. IEEE 80, 283-309 (1992).
[34] M. Viberg, “Subspace based methods for the identification of linear time invariant systems, Automatica 31, 1835-1851 (1995).
[35] A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy, Microsc. Res. Tech. 67, 36-44 (2005).
[36] E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye, Opt. Lett. 26, 746-748 (2001).
[37] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation, Appl. Opt. 38, 168-176 (1999).
[38] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror, Appl. Opt. 38, 6019-6026 (1999).
[39] http://www.mathworks.com/help/toolbox/control/ref/lqi.html
[40] J.-N. Juang and M. Q. Phan, Identification and Control of Mechanical Systems (Cambridge University Press, 2001).
[41] William L. Brogan, Modern Control Theory (Prentice Hall Inc., 1991).
[42] 李志升,最佳化增穩自動駕駛於無人飛機之實現,成功大學航空太空工程研究所碩士論文,2008。
[43] R. N. Paschall and D. J. Anderson, “Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements, Appl. Opt. 32, 6347-6358 (1993).
[44] R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model, Prof. SPIE 6272, 62725H (2006).
[45] J. Herrmann, “Phase variance and Strehl ratio in adaptive optics, J. Opt. Soc. Am. A 9, 2257-2258 (1992).
[46] 張家源,具適應性光學系統之廣視域多光子激發螢光顯微術,成功大學光電科學與工程研究所碩士論文,2010。
[47] 鐘正英,具液晶移相干涉術之適應性光學系統,中央大學機械工程所碩士論文,2005。
[48] 卓粳佶,適應性光學於視覺科學之初探,成功大學工程科學所碩士論文,
2006。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top