跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張仕政
研究生(外文):Shih-ChengChang
論文名稱:考量順序關係之市場機會探索方法研發
論文名稱(外文):Developing a Chance Discovery Method with Consideration of Sequential Relationship
指導教授:陳裕民陳裕民引用關係
指導教授(外文):Yuh-Min Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造資訊與系統研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:70
中文關鍵詞:機會探索文字探勘語意分析
外文關鍵詞:Chance DiscoveryText MiningSemantic Analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
網路資訊豐富且取得便利,其中包含了口碑、評價等可以瞭解市場與消費者反應的資訊,且此資訊已成為企業產品創新或服務改善的重要參考。由於市場動態變化頻繁,易受到時間發生的演變、因果事件的相互影響與群眾在網路上對於人事時地物的評論,造成事件間產生不同的關聯。因此掌握這些關聯是攸關企業能否在市場搶得先機的重要因素之一。本研究目的是發展一考量順序關係之市場機會探索方法。利用文字探勘與語意分析等方法,探勘事件間的關聯法則與時間、因果、階層等順序關係,以瞭解市場趨勢,並協助企業尋找市場機會,提升企業競爭力。
With the richness of Internet, it becomes easier to get information, including the word of mouth and appraisal which help the product innovation or service improvement for enterprises. However, as the frequent change of market, the variation of time, the causal event, and the users’ rates could form the different connections between events. To know well the connections becomes an important factor to take the preemptive opportunities for enterprises. This study proposed a chance discovery method with consideration of sequential relationship, which integrates the text mining and semantic analysis to explore the general, time, causal, and hierarchical relations. The method could assist enterprises understanding the trends of market, finding the change, and enhancing the competitiveness.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 問題分析 3
1.5 研究項目 4
1.6 研究步驟 5
1.7 論文架構 7
第二章 文獻探討 9
2.1 機會探索 9
2.2 資料探勘 11
2.3 邏輯迴歸分析 13
第三章 模式與流程設計 15
3.1 模式設計 15
3.2 流程設計 17
3.2.1 部落格資料蒐集 17
3.2.2 部落格內容前處理 17
3.2.3 字詞精煉 18
3.2.4 資料探勘與順序關係探勘 18
3.2.5 機會價值評估 19
第四章 核心方法設計 21
4.1 部落格內容蒐集 21
4.1.1 部落格內容搜尋 21
4.1.2 領域辭彙庫建構 22
4.2 部落格內容前處理 22
4.2.1 序列資料萃取 23
4.2.2 因果資料萃取 23
4.2.3 形容詞資料萃取 23
4.3 字詞精煉 24
4.4 資料探勘與順序關係探勘 25
4.4.1 時間關係探勘 25
4.4.2 因果關係探勘 26
4.4.3 階層關係探勘 27
4.4.4 關聯法則探勘 29
4.5 機會價值評估 30
4.5.1 候選機會價值評估 30
4.5.2 總體價值評估 32
第五章 實驗設計與機制驗證 34
5.1 資料簡介與實驗流程 34
5.2 實作畫面與數據分析 34
5.2.1 部落格內容前處理實驗分析 35
5.2.2 字詞精煉實驗分析 35
5.2.3 資料探勘與順序關係探勘實驗分析 38
5.2.4 機會價值評估實驗分析 43
5.2.5 小結 51
第六章 結論與未來展望 53
6.1 結論與成果 53
6.2 研究限制 53
6.3 未來研究方向 53
參考文獻 55
附錄一 光儲存領域字典 58
附錄二 因果動詞表 65
附錄三 形容詞對應之概念(地圖) 66
[1]H. C. Chen, M. Chau, and D. Zeng, CI Spider: a tool for competitive intelligence on the Web, Decision Support Systems, vol. 34, pp. 1-17, Dec 2002.
[2]Y. Li, L. Wang, and C. Hong, Extracting the significant-rare keywords for patent analysis, Expert Systems with Applications, vol. 36, pp. 5200-5204, 2009.
[3]S. Goda and Y. Ohsawa, Chance Discovery in Credit Risk Management; Estimation of Chain Reaction Bankruptcy Structure by Chance Discovery Method, 2006.
[4]C.-F. Hong, Qualitative Chance Discovery-Extracting competitive advantages, Information Sciences, vol. 179, pp. 1570-1583, 2009.
[5]H. Kärkkäinen and K. Elfvengren, Role of careful customer need assessment in product innovation management--empirical analysis, International Journal of Production Economics, vol. 80, pp. 85-103, 2002.
[6]S. Goda and Y. Ohsawa, Chance discovery in credit risk management: estimation of chain reaction bankruptcy structure by directed keygraph, 2007, pp. 896-904.
[7]C. Hong, Discovering the rare opportunity by strategy based interactive value-focused thinking model, International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 11, pp. 259-271, 2007.
[8]Y. Iwase, Y. Seo, and Y. Takama, Scenario to Data Mapping for Chance Discovery Process, Soft Computing-A Fusion of Foundations, Methodologies and Applications, vol. 11, pp. 773-781, 2007.
[9]K. Kim, M. Jung, and S. Cho, KeyGraph-based chance discovery for mobile contents management system, International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 11, pp. 313-320, 2007.
[10]Y. Ohsawa, Chance discovery as value sensing by data based meta cognition, 2008, pp. 5-6.
[11]H. F. Yang and M. H. Lin, Innovative Chance Discovery-Extracting Customers' Innovative Concept, Applications of Evolutionary Computing, pp. 462-466, 2009.
[12]H. Chao-Fu, L. Mu-Hua, Y. Hsiao-Fang, and H. Chien-Jen, A novel chance model for building innovation diffusion scenario, in Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, 2010, pp. 3845-3852.
[13]T.-F. Chiu, C.-F. Hong, and Y.-T. Chiu, An Experiment Model of Grounded Theory and Chance Discovery for Scenario Exploration, in Advances in Intelligent Information and Database Systems. vol. 283, N. Nguyen, R. Katarzyniak, and S.-M. Chen, Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 291-301.
[14]L. Rochford and W. Rudelius, New product development process: Stages and successes in the medical products industry, Industrial Marketing Management, vol. 26, pp. 67-84, 1997.
[15]W. Kim and R. Mauborgne, Blue ocean strategy: How to create uncontested market space and make the competition irrelevant: Harvard Business Press, 2005.
[16]Y. Ohsawa, Chance discoveries for making decisions in complex real world, New Generation Computing, vol. 20, pp. 143-163, 2002.
[17]Y. Ohsawa and Y. Nara, Modeling the process of chance discovery by chance discovery on double helix, 2002, pp. 33-40.
[18]T. Sakakibara and Y. Ohsawa, Gradual-increase extraction of target baskets as preprocess for visualizing simplified scenario maps by KeyGraph, Soft Computing, vol. 11, pp. 783-790, Jun 2007.
[19]H. Wang, Y. Ohsawa, and Y. Nishihara, Innovation support system for creative product design based on chance discovery, Expert Systems with Applications, vol. 39, pp. 4890-4897, Apr 2012.
[20]Y. Ohsawa and Y. Nara, Understanding internet users on double helical model of chance-discovery process, 2003, pp. 844-849.
[21]A. Abe and Y. Ohsawa, Special issue on chance discovery, International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 11, pp. 255-257, 2007.
[22]Y. Maeno and Y. Ohsawa, Human-computer interactive annealing for discovering invisible dark events, Ieee Transactions on Industrial Electronics, vol. 54, pp. 1184-1192, Apr 2007.
[23]E. Lazcorreta, F. Botella, and A. Fernández-Caballero, Towards personalized recommendation by two-step modified Apriori data mining algorithm, Expert Systems with Applications, vol. 35, pp. 1422-1429, 2008.
[24]J. H. Chang, Mining weighted sequential patterns in a sequence database with a time-interval weight, Knowledge-Based Systems, vol. 24, pp. 1-9, 2011.
[25]D.-S. Chang and K.-S. Choi, Causal Relation Extraction Using Cue Phrase and Lexical Pair Probabilities, in Natural Language Processing – IJCNLP 2004. vol. 3248, K.-Y. Su, J. i. Tsujii, J.-H. Lee, and O. Y. Kwong, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 61-70.
[26]P. Noonan, Using Concept Maps in Perioperative Education, AORN, vol. 94, pp. 469-478, 2011.
[27]U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From data mining to knowledge discovery in databases, AI magazine, vol. 17, p. 37, 1996.
[28]J. Michael and S. L. Gordon, Data mining techniques: for marketing, sales, and customer support, New York: John Wiley&Sons INC, vol. 445, 1997.
[29]P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi, Discovering data mining–from concept to implementation, Upper Saddle River, 1998.
[30]H. Jiawei and M. Kamber, Data mining: concepts and techniques, San Francisco, CA, itd: Morgan Kaufmann, vol. 5, 2001.
[31]R. Srikant and R. Agrawal, Mining generalized association rules, Future Generation Computer Systems, vol. 13, pp. 161-180, 1997.
[32]R. Girju and D. Moldovan, Text mining for causal relations, 2002, pp. 360-364.
[33]Z. Shi, H. Ma, and Q. He, Web Mining: Extracting Knowledge from the World Wide Web, in Data Mining for Business Applications, L. Cao, P. S. Yu, C. Zhang, and H. Zhang, Eds., ed: Springer US, 2009, pp. 197-208.
[34]H. Jingfang and L. Busheng, An improved algorithm of association rules in the application of web logs, Energy Procedia, vol. 13, pp. 1282-1286, 2011.
[35]S. W. Menard, Applied logistic regression analysis vol. 106: Sage Publications, Inc, 2002.
[36]J. Atkinson and A. Rivas, Discovering Novel Causal Patterns from Biomedical Natural-Language Texts using Bayesian Nets, Information Technology in Biomedicine, IEEE Transactions on, vol. 12, pp. 714-722, 2008.
[37]NASDAQ. (2012). VOXX International Corporation (VOXX) Stock Chart. Available: http://www.nasdaq.com/symbol/voxx/stock-chart?intraday=off&timeframe=5y&charttype=ohlc&splits=off&earnings=off&movingaverage=None&lowerstudy=volume&comparison=off&index=&drilldown=off&sDefault=true
[38]Wikipedia. (2012). Audiovox. Available: http://en.wikipedia.org/wiki/Audiovox
[39]D. Taylor. (2012). Ask Dave Taylor: What's with all these cloud drives? Available: http://www.dailycamera.com/business-columnists/ci_20594584/ask-dave-taylor-whats-all-these-cloud-drives
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊