跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳興豪
研究生(外文):Hsin-HaoWu
論文名稱:輔助氣體側壁噴注對二氧化碳雪花生成之影響
論文名稱(外文):CO2 Snow Formation by Sidewall Injection of Carrier Gas
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:二氧化碳雪花側壁孔粒子濃度生成率
外文關鍵詞:CO2 SnowSidewall HoleNumber DensityYield Rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的係以二氧化碳雪花形成腔體側壁孔及供應輔助氣體噴注之設計,探討對二氧化碳雪花(CO2 Snow)生成之影響。由於液態高壓二氧化碳流體經噴嘴孔口(Orifice)霧化後,在二氧化碳雪花形成腔內再降壓並產生相的變化,而生成二氧化碳氣體與固體之二氧化碳雪花粒子混合之噴流。此氣體與固體混合物在雪花形成腔內,由於二氧化碳雪花粒子在噴流過程中之蒸發現象以及二氧化碳雪花粒子間之碰撞結合,會改變原始噴流中二氧化碳雪花之粒徑大小、粒子濃度及其流場速度。因此,在二氧化碳形成腔體側壁上增加噴注孔,亦會改變二氧化碳雪花形成之機制,且對噴流的結構產生影響。
實驗結果顯示;有側壁孔之雪花形成腔體及在無輔助氣體噴注情況下,形成腔體出口二氧化碳雪花噴流平均速度與粒子間速度差異,將隨側壁孔孔徑之增大而增加;但隨側壁孔與噴嘴孔間之距離增長而減少。二氧化碳雪花粒徑,則隨側壁孔直徑增加而增大,隨側壁孔位置增加而降低。噴霧濃度則隨側壁孔直徑增大而遞減,隨側壁孔與噴嘴孔間之距離增加而遞增。二氧化碳雪花生成率隨側壁孔孔徑增大而遞增;隨側壁孔與噴嘴間之距離增加而上升。
當有輔助氣體噴注時,實驗結果發現;採用較小之輔助氣體噴注壓力、較大之側壁孔孔徑及較小之側壁孔與噴嘴孔間距離,可獲得較高之二氧化碳雪花噴流平均速度與粒子間速度差異。若選擇較小之輔助氣體噴注壓力、較大之側壁孔孔徑及較小之側壁孔與噴嘴孔間距離,則可獲較大之二氧化碳雪花粒徑及濃度。但欲獲得較大之二氧化碳雪花生成率,則必須採用較小之側壁孔孔徑、較大之側壁孔位置 (側壁孔與噴嘴孔間距離)與較小之輔助氣體噴注壓力。

This paper is to investigate the design of the sidewall holes with carrier gas injection in the formation chamber on the production of CO2 Snow. The injection of the pressurized carbon dioxide liquid through the orifice will result in the pressure drop and phase change in the snow formation chamber. Hence the gaseous and solidus carbon dioxide particles are produced as the jet flow of the mixture. The particle size, particle number density and the particle velocity will be changed due to the evaporation and particle collisions during the injection processes. The change of the structure of the formation chamber would obviously influence the formation of the CO2Snow jet.
Experimental results for no carrier gas injection show that the velocity of the CO2 Snow jet increases as the diameter of the sidewall hole is increased. However, the velocity of the CO2 Snow jet decreases and the number density of the CO2 Snow particles increases as the distance between the center of sidewall hole and orifice exit is increased. The yield rate of the CO2 Snow increase as both the diameter of the sidewall hole and the distance between the center of sidewall hole and orifice exit are increased.
As carrier gas injection condition, the results of experiment were found that to choose the lower carrier gas injection pressure, the bigger sidewall holes diameter, the shorter distance between center of sidewall hole and orifice exit, the faster mean velocity and root mean square velocity were shown on CO2 Snow jet. If those parameters for the shorter distance between center of sidewall hole and orifice exit, the bigger sidewall holes diameter, and the lower carrier gas injection pressure be chosen, the bigger CO2 Snow particles size and the denser CO2 Snow number density can be obtained. But, if we intend to get the higher CO2 Snow yield rate, the lower carrier gas injection pressure, the smaller sidewall holes diameter, the longer distance of sidewall hole location (between center of sidewall hole and orifice exit) should be chosen.

目錄 I
表目錄 IV
圖目錄 V
符號說明 X
第一章 緒論 1
1-1 前言 1
1-2 二氧化碳熱力性質 2
1-3 二氧化碳雪花形成原理 2
1-4 二氧化碳清洗技術之應用 3
1-4-1 乾冰粒子法(Macroscopic Dry Ice Pellets) 4
1-4-2 二氧化碳雪花噴洗法(Snow Cleaning) 4
1-4-3 液態二氧化碳清洗法(Liquid CO2) 4
1-4-4 超臨界二氧化碳清洗法(Supercritical CO2 Cleaning) 5
1-5 二氧化碳雪花冷凍治療之應用 5
1-6 文獻回顧 5
1-6-1 粒子影像測速技術 6
1-6-2 霧化原理與噴嘴設計 7
1-6-3 二氧化碳雪花生成與清洗相關文獻 13
1-6-4 冷凍治療相關文獻 14
1-7 研究動機與目的 15
第二章 實驗設備與儀器 29
2-1 實驗設備 29
2-1-1 噴霧性能測試台 29
2-1-2 抽氣整流系統 29
2-1-3 高壓液態二氧化碳供應系統 30
2-1-4 氣態氮氣供應系統 30
2-1-5 二氧化碳雪花形成裝置與輔助氣體噴注腔體 30
2-1-6 二氧化碳雪花生成率之量測裝置 31
2-2 量測儀器 31
2-2-1 粒徑分析儀 31
2-2-2 RT-Sizer粒徑分析儀校正記錄(Calibration Record) 33
2-2-3 PIV粒子影像測速儀 33
2-3 主要量測參數 33
2-3-1 平均粒徑SMD 34
2-3-2 Dv10 34
2-3-3 Dv50(Median Mean Diameter) 34
2-3-4 Dv90 35
2-3-5 粒子體積濃度(Cv) 35
2-3-6 二氧化碳雪花生成率之量測 35
第三章 實驗步驟及方法 47
3-1 實驗量測條件 47
3-2 二氧化碳雪花流場速度與粒子間速度差異之測量 47
3-3 二氧化碳雪花流場之視流觀測 48
3-4 Insitec RT-Sizer粒徑分析儀的量測 48
3-4-1 Insitec RT-Sizer之量測條件 48
3-4-2 雷測光校準 (Alignment) 48
3-4-3 雜訊值之設定 (Noise) 49
3-4-4 背景值之設定 (Background) 49
3-4-5 噴霧粒徑量測數據之擷取 49
3-4-6 覆檢雷射光之校準值 49
3-5 數據取樣與分析 49
第四章 結果與討論 50
4-1 二氧化碳雪花噴流之視流實驗 50
4-1-1 無輔助氣體噴注之二氧化碳雪花噴流結構 51
4-1-2 具輔助氣體噴注之二氧化碳雪花噴流結構 52
4-2 二氧化碳雪花流場之平均速度與粒子間速度差異探討 57
4-2-1 具輔助氣體噴注腔體與無輔助氣體噴注腔體之二氧化碳雪花流場速度與粒徑間速度差異探討 57
4-2-2 側壁孔孔徑對二氧化碳雪花流場之速度與粒子間速度差異探討 63
4-2-3 側壁孔位置對二氧化碳雪花流場速度與粒子間速度差異之探討 72
4-2-4 輔助氣體噴注壓力對二氧化碳雪花流場速度與粒子間速度差異之探討 81
4-3 二氧化碳雪花噴霧特性研究 90
4-3-1 具輔助氣體噴注腔體與無輔助氣體噴注腔體之二氧化碳雪花粒徑效應探討 90
4-3-2 形成腔體側壁孔孔徑對二氧化碳雪花粒徑、雷射穿透率與粒徑濃度之效應探討 93
4-3-3 形成腔體側壁孔位置對二氧化碳雪花粒徑與濃度之探討 99
4-3-4 輔助氣體噴注壓力對二氧化碳雪花粒徑與濃度之探討 105
4-4 輔助氣體噴注與形成腔體側壁孔設計對二氧化碳雪花生成之探討 109
第五章 結論 116
第六章 建議與研究方向 117
參考文獻 118

[1]鄭宇舜、楊勝仲、李國正(2007),「運用CO2 Snow乾式噴洗技術於FPD清洗製程之應用」,機械工業,292期,頁100-101。
[2]R. Sherman and P. Adams (1995),Carbon Dioxide Snow Cleaning-The Next Generation of Clean, Precision Cleaning, p.271。
[3]S.A. Hoening (1986), “Cleaning surface with dry ice, Compressed Air Mag, ED-8, pp. 22-24。
[4]Robert Sherman (2007), “Carbon Dioxide Snow Cleaning, Particulate Sci. Technol, Vol.25, pp. 37-57。
[5]Lourenco, L. M., Krothapalli, A., and Smith, C. A (1989), “Particle Image Velocimetry, Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering-45, Springer-Verlag, pp. 127-200。
[6]Lourenco, L. M., Krothapalli, A., Buchlin, J. M., and Riethmuller, M. L (1986), “A Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity and Vorticity Fields, AIAA Jornal, 24, pp. 1715-1717。
[7]Lourenco, L. M., and Krothapalli A (2004), “Stereoscopic and Time Resolved PIV Measurements in High-Speed Flows, AIAA, 2180-2194。
[8]Raffel, M., Willert, C. E., Kompenhans, J (1998), “Particle Image Velocimetry–A Practical Guide, Springer, ISBN 3-540-63683-8。
[9]Willert, C., Raffel, M., Kompenhans, J., Stasicki, B., and La’’hler, C (1996), “Recent Applications of Particle Image Velocimetry in Aerodynamic Research, Flow Meas. Instrum., 7(3/4). pp. 247-256。
[10]Adrian, R. J (2005), “Twenty Years of Particle Image Velocimetry, Experiments in Fluids, 39, pp. 159-169。
[11]Menon, M., and Lai, W. T. (1991), “Key Considerations in the Selection of Seed Particles for LDV measurements, Laser Anemometry Advances and Applications, ASME, pp. 719-730。
[12]Ikeda, Y., Nishigaki, M., Ippommatsu, M., and Nakajima, T. (1994), “Optimum Seeding Particles for Successful Laser Doppler Velocimeter Measurements, Part. Part. Syst. Charact., 11, pp. 127-132。
[13]Nishigaki, M., Ippommatsu, M., Ikeda, Y., and Nakajima, T. (1992), “New High-Performance Tracer Particles for Optical Gas Flow Diagnostics, Meas. Sci. Technol., 3, pp. 619-621。
[14]Lee, K. H., Lee, C. H., and Lee, C. S (2004), “An Experimental Study on the Spray Behavior and Fuel Distribution of GDI Injectors Using the Entropy Analysis and PIV Method, Fuel, 83, pp. 971-980。
[15]Richter, B., Rottenkolber, G., Hehle, M., Dullenkopf, K., and Wittig, S. (1989), “Investigation of Fuel Sprays by Means of Stereoscopic Particle Image Velocimetry and Highspeed Visualization, ILASS-Europe 2001, Zurich, 2-6 September。
[16]Newbery, A. P., Rayment, T., and Grant, P. S (2004), “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming, Materials Science and Engineering A, 383, pp. 137-145。
[17]A. H. Lefebvre (1989), “Atomization and Sprays, Hemisphere Publishing Corporation, New York。
[18]A. H. Lefebvre (1983), “Gas Turbine Combustion, Chapter 10, Hemisphere Publishing Corporation, New York。
[19]R. A., Jr. Castleman (1930), “The Mechanism of the Atomization of Liquid, Burean of Standards Journal of Research, Vol. 6, pp. 369-376。
[20]N. Dombrowski and W. R. Johns (1963), “The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets, Chem. Eng. Sci., Vol. 18, pp. 203-214。
[21]B. E. Stapper, W. A. Sowa and G. S. Samuelsen (1992), An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet, ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45。
[22]R. P. Fraser (1957), Liquid Fuel Atomization, Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701。
[23]G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott (1973), A note on the growth of Kelvin-Helmholtz waves on thin liquid sheets, J. Fluid Mech., vol. 57, part 4, pp. 671-672。
[24]H. C. Simmons (1979), “The Atomization of Liquid, Principles and Methods, Parker Hannifin Report No.7901/2-0。
[25]F. R. Zhang, S. Wakabayashi and N. Tokuoka (1994), “The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizers), Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680。
[26]A.A. Rizkalla ana A.H. Lefebvre (1975),Influence of Liquid Properties on Airblast Atomizer Spray Characteristices, J.Eng.Power,pp. 173-179。
[27]A.A Rizkalla and A.H. Lefebvre (1975), The Influence of Air and Liquid Properties on Airblast Atomization, J. Fluids Eng.,vol. 97, pp. 316-320。
[28]Rizk, N. K. and Lefebvre, A. H. (1983), “Influence of Atomizer Design Feature on Mean Drop Size, AIAA Journal, Vol. 21, No. 8, pp. 1139-1142。
[29]Beck, J., Lefebvre, A.H., and Koblish, T. (1989), “Air Blast Atomization at Conditions of Low Air Velocity, Paper No, AIAA, 89-0217。
[30]J.E. Beck, A.H. Lefebvre and T.R. Koblish (1991), “Liquid Sheet Disintegration by Impinging Air Streams, Atomization and Sprays, Vol. 1, No. 2, pp. 155-170。
[31]J. E. Beck and A.H. Lefebvre (1991), Airblast Atomization at Conditions of Low Air Volcity, J.Propulsion, vol. 7, NO. 2。
[32]M. Aligner and S. Wittig (1980),Swirl and Counterswirl Efferts in Prefilming Airblast Atomization, Trans. ASME, J. Eng. Power,vol. 102, pp.706-710。
[33]Dorman, R.G. (1952), “The Atomization of Liquid in a Flat Spray, British J. Appl. Phys. , Vol. 3 , pp. 189-192。
[34]Fraser, R. P. Eisenklam , P. Dombrowski , N. and Hasson , D. (1962 ), “Drop Formation from Rapidly Moving Sheets, A. I. Ch.E. J., Vol. 8, No. 5, pp. 672-680。
[35]Dombrowski, N. and John, W. R. (,1963), “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets, Chem. Eng. Sci ., Vol. 18 , pp. 203-214。
[36]Sattlemayer, T. and Witting, S. (1986), “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra, ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 465-472。
[37]N.K. Rizk and A.H. Lefebvre (1984), Spray Characteristics of Plain-ject Airblast Atomizer, Transtion of The Asme vol. 106。
[38]C.Press,A.K.Gupta,and H.G. Semerjian (1988),Aerodynamic Effects on Fuel Spray Characteristics:Air-assist Atomizer, HTD-vol. 104 , pp. 111-119。
[39]Lin, T. C (2006), “Production of Metal Powder by Atomization Processes with Internal Impinging Mechanism, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C。
[40]Muh-Rong Wang, Tien-Chu Lin, Teng-San Lai, Ing-Ren Tseng (2005), “Atomization Performance of an Atomizer with Internal Impingement, JSME International Journal, Series II, Vol. 48, No. 4, pp.858-864。
[41]Whitlow, J. D., and Lefebvre, A. H (1993), “Effervescent Atomizer Operation and Spray Characteristics, Atomization and Sprays, 3, pp. 137-156。
[42]Nguyen, D. A., and Rhodes, M. J (1998), “Producing Fine Drops of Water by Twin-Fluid Atomisation, Powder Technology, 99, pp. 285-292。
[43]Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T. (2002), “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke, Experimental Thermal and Fluid Science, 26, pp. 715-722。
[44]S.A. Hoening (1990), “Dry ice snow as a cleaning media for hybrids and integrated circuits, Hybrids Circuit Technol. ED-7, pp. 34-37。
[45]M.M. Hills (1995), “Carbon dioxide jet spray cleaning of molecular contaminants, J. Vac. Sci. Technol. A, Vol. 13, No 1, pp. 30-34。
[46]S. Banerjee and A. Campbell (2005), “Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique, J. Adhes. Sci. Technol., pp. 739-751。
[47]S.C. Yang, K.S. Huang, Y.C. Lin (2007), “Optimization of a pulsed carbon dioxide snow jet for cleaning CMOS image sensors by using the Taguchi method, Sensors and Actuators A, Vol. 139, pp. 265-271。
[48]張育仁 (2008), “Formation and Characterization of CO2-Snow Jet,中國機械工程學會第二十五屆全國學術研討會。
[49]陳軍佑 ( 2009), “Influence of Secondary Atomization on CO2 Snow Jet Flow Field, 中華民國航空太空學會/中華民用航空學會聯合學術研討會。
[50]陳建伸 (2010), “Design of Co-axial Type Injector for Carbon Dioxide Snow Formation, 國立成功大學航空太空工程研究所碩士論文, p121。
[51]Smith, D.J., Fahssi, W.M., Swanlund, D.J. and Bischof, J.C. (1999), “Aparametric study of freezing injury in AT-1 rat prostate tumor cells, Cryobiology, vol. 39, pp 13–28。
[52]洪哲元 (2011), “應用於內視鏡醫療系統之冷凍治療術研究, 國立成功大學航空太空工程研究所碩士論文, pp 106–107。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top