跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃政達
研究生(外文):Cheng-TaHuang
論文名稱:基於位元排列及雙向擴散之一改良型加密方法
論文名稱(外文):An Improved Image Encryption Method Based on Bit-level Permutation and Two-way diffusion
指導教授:陳進興陳進興引用關係
指導教授(外文):Chin-Hsing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:53
中文關鍵詞:影像加密混沌密碼
外文關鍵詞:ImageEncryptionChaosCryptography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混沌系統擁有遍歷性、準隨機性以及對初始值及參數的高敏感性等特性,而這些特性與密碼學有緊密的關係。因此,近幾年來,混沌理論被廣泛的研究應用在安全性傳輸及資訊加密上

本論文提出一基於混沌理論改善型Fridrich架構的影像加密系統。此方法之靈感來自Zhu和Ye兩個加密系統,並加入一些創新以增強安全性及效率,如此保留了上述兩加密系統原有的優點而修正了其缺點。首先,skew tent map用來產生混沌軌跡,以得到兩索引序列去做列與列、行與行之間的位元排列。接著,藉由generalized Arnold map及generalized Bernoulli shift map產生的兩準隨機序列去做two-way diffusion。

本論文對所提架構做了詳細的模擬分析。對加密影像而言,直方圖分佈平坦,熵值非常接近理想值8,而且相關係數趨近於零。也就是說,加密影像的統計特性與隨機影像的統計特性極為相近。在差異分析上,僅一回合之加密即可使NPCR與UACI之平均值高達99.6%及33.4%以上。在金鑰的敏感度測試上,使用非常微小變化的金鑰所加密的兩密文其差異值為99.6%以上。金鑰空間為 ,足夠抵檔暴力破解法。加密一張512x512的256階灰階影像平均花費0.021秒,其速度比Zhu 0.061秒與Ye 0.177秒的系統快。所提系統在安全性、速度、敏感性上的高效能表現證明其在實際應用上的可行性。
Chaotic system is characterized by ergodicity, pseudo-randomness, and sensitivity to initial conditions and control parameters. These properties have a close relationship to cryptography. As a result, secure communications and information encryption based on chaos have been studied widely in the recent years.

In this thesis, an improved chaos-based image encryption scheme of Fridrich type is proposed. The proposed scheme is inspired by the Zhu’s and the Ye’s cryptosystems, and some novelties are added to enhance the security and efficiency. The merits of the two approaches are kept but the flaws are remedied. Firstly, a skew tent map is employed to generate chaotic orbits to get two index order sequences for the row-by-row and column-by-column bit-level permutation. And then two pseudo-random sequences are produced by a generalized Arnold map and a generalized Bernoulli shift map for the two-way diffusion process.

Simulations of the proposed scheme have been carried out with detail analysis. For the encrypted image, the histogram distribution is flat, the entropy is very close to the theoretical value 8, and the correlation coefficient is approximated to zero. Namely, the encrypted image is similar to a random image in the statistical features. For differential analysis, the average value of NPCR and UACI can reach more than 99.6% and 33.4% in only one round of encryption. For key sensitivity test, the change between two cipher-images using two slightly different keys is over 99.6%. The key space is which is large enough to resist all kinds of brute-force attacks. The average encryption time is 0.021 seconds for a 512x512 256 grayscale image, and it is faster than the Zhu’s 0.061 seconds, and the Ye’s 0.177 seconds cryptosystems. The high performance on security, speed and sensitivity demonstrates that the proposed scheme is a good candidate for practical applications.

摘要 I
Abstract III
誌謝 V
Content VI
Table Captions VIII
Figure Captions IX
Chapter 1 Introduction 1
1.1 Dynamical chaos 1
1.2 Cryptography and chaos 3
1.3 Analog chaos-based cryptosystems and digital chaos-based cryptosystems 5
1.4 Chaos-based image encryption 6
1.5 Organization 7
Chpater2 An overview of Fridrich type cryptosystems 8
2.1 The Fridrich type image encryption architecture 8
2.2 S. Lian et al. 2005 10
2.3 Z. Zhu et al. 2011 12
2.4 R. Ye 2011 16
2.4.1 The generalized Arnold map 17
2.4.2 Permutation process 19
2.4.3 Diffusion process 20
Chapter3 The proposed cryptosystem 23
3.1 The drawbacks of Zhu’s and Ye’s cryptosystems 23
3.2 The architecture of the proposed scheme 26
3.2.1 Permutation stage in the proposed cryptosystem 28
3.2.2 Diffusion stage in the proposed cryptosystem 30
Chapter4 Experimental results and security analysis 33
4.1 Experimental results 33
4.2 Statistical analysis 35
4.2.1 Histogram 35
4.2.2 Information entropy 37
4.2.3 Correlation of adjacent pixels 37
4.3 Key sensitivity and key space analysis 40
4.4 Differential attack analysis 43
4.5 Speed performance 45
4.6 Resistance to known-plaintext and chosen-plaintext attacks. 45
Chapter 5 Conclusion 47
References 49

[1] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos, Vol. 16, No. 8, pp. 2129–2151, 2006.
[2] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of an ergodic chaotic cipher, Physics Letters A, Vol. 311, No. 2–3, pp. 172–179, 2003.
[3] D. Arroyo, G. Alvarez and V. Fernandez, “On the inadequacy of the logistic map for cryptographic applications, X Reunión Española sobre Criptología y Seguridad de la Información (X RECSI), pp. 77–82, 2008.
[4] D. Arroyo, C. Li, S. Li and G. Alvarez, “Cryptanalysis of a computer cryptography scheme based on a filter bank, Chaos, Solitons & Fractals, Vol. 41, No. 1, pp. 410–413, 2009.
[5] D. Arroyo, C. Li, S. Li, G. Alvarez and W. A. Halang, “Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm, Chaos, Solitons & Fractals, Vol. 41, No. 5, pp. 2613–2616, 2009.
[6] G. Chen, Y. Mao and C. K. Chui, “A symmetric image encryption scheme based on 3D chaotic cat maps, Chaos, Solitons & Fractals, Vol. 21, No. 3, pp. 749–761, 2004.
[7] C. Çokal and E. Solak, “Cryptanalysis of a chaos-based image encryption algorithm, Physics Letters A, Vol. 373, No. 15, pp. 1357–1360, 2009.
[8] J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifurcation and Chaos, Vol. 8, No. 6, pp. 1259–1284, 1998.
[9] T. Gao and Z. Chen, “A new image encryption algorithm based on hyper-chaos, Physics Letters A, Vol. 372, No. 4, pp. 394–400, 2008.
[10] T. Gao and Z. Chen, “Image encryption based on a new total shuffling algorithm, Chaos, Solitons & Fractals, Vol. 38, No. 1, pp. 213–220, 2008.
[11] Z. Guan, F. Huang, and W. Guan, “Chaos-based image encryption algorithm, Physics Letters A, Vol. 346, No. 1–3, pp. 153–157, 2005.
[12] A. Kerckhoffs, “La cryptographie militaire, Journal des sciences militaires, Vol. 9, No. 1, pp. 5–38, 1883.
[13] L. Kocarev, “Chaos-based cryptography: a brief overview, IEEE Circuits and Systems Magazine, Vol. 1, No. 3, pp. 6 –21, 2001.
[14] S. Lian, J. Sun and Z. Wang, “A block cipher based on a suitable use of the chaotic standard map, Chaos, Solitons & Fractals, Vol. 26, No. 1, pp. 117–129, 2005.
[15] X. Liao, S. Lai and Q. Zhou, “A novel image encryption algorithm based on self-adaptive wave transmission, Signal Processing, Vol. 90, No. 9, pp. 2714–2722, 2010.
[16] H. Liu and X. Wang, “Color image encryption using spatial bit-level permutation and high-dimension chaotic system, Optics Communications, Vol. 284, No. 16–17, pp. 3895–3903, 2011.
[17] R. Matthews, “On the derivation of a chaotic encryption algorithm, Cryptologia, Vol. 13, No. 1, pp. 29–42, 1989.
[18] G. Pastor, M. Romera and F. Montoya, “A revision of the Lyapunov exponent in 1D quadratic maps, Physica D: Nonlinear Phenomena, Vol. 107, No. 1, pp. 17–22, 1997.
[19] V. Patidar, N. K. Pareek, G. Purohit and K. K. Sud, “A robust and secure chaotic map based pseudorandom permutation-substitution scheme for image encryption, Optics Communications, Vol. 284, No. 19, pp. 4331–4339, 2011.
[20] V. Patidar, N. K. Pareek and K. K. Sud, “A new substitution–diffusion based image cipher using chaotic standard and logistic maps, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 7, pp. 3056–3075, 2009.
[21] R. Rhouma and S. Belghith, “Cryptanalysis of a new image encryption algorithm based on hyper-chaos, Physics Letters A, Vol. 372, No. 38, pp. 5973–5978, 2008.
[22] R. Rhouma, E. Solak and S. Belghith, “Cryptanalysis of a new substitution–diffusion based image cipher, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 7, pp. 1887–1892, 2010.
[23] C. Shannon, “Communication Theory of Secrecy Systems, Bell System Technical Journal, Vol. 28, No. 4, pp. 656–715, 1949.
[24] K. Wang, W. Pei, L. Zou, A. Song and Z. He, “On the security of 3D Cat map based symmetric image encryption scheme, Physics Letters A, Vol. 343, No. 6, pp. 432–439, 2005.
[25] X. Wang and C. Jin, “Image encryption using Game of Life permutation and PWLCM chaotic system, Optics Communications, Vol. 285, No. 4, pp. 412–417, 2012.
[26] Y. Wang, K. Wong, X. Liao, T. Xiang, and G. Chen, “A chaos-based image encryption algorithm with variable control parameters, Chaos, Solitons & Fractals, Vol. 41, No. 4, pp. 1773–1783, 2009.
[27] K. Wong, B. Kwok and W. Law, “A fast image encryption scheme based on chaotic standard map, Physics Letters A, Vol. 372, No. 15, pp. 2645–2652, 2008.
[28] K. Wong, B. Kwok and C. Yuen, “An efficient diffusion approach for chaos-based image encryption, Chaos, Solitons & Fractals, Vol. 41, No. 5, pp. 2652–2663, 2009.
[29] H. Yang, K. Wong, X. Liao, W. Zhang and P. Wei, “A fast image encryption and authentication scheme based on chaotic maps, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 11, pp. 3507–3517, 2010.
[30] R. Ye, “A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism, Optics Communications, Vol. 284, No. 22, pp. 5290–5298, 2011.
[31] G. Zhang and Q. Liu, “A novel image encryption method based on total shuffling scheme, Optics Communications, Vol. 284, No. 12, pp. 2775–2780, 2011.
[32] W. Zhang, K. Wong, H. Yu and Z. Zhu, “An image encryption scheme using lightweight bit-level confusion and cascade cross circular diffusion, Optics Communications, Vol. 285, No. 9, pp. 2343–2354, 2012.
[33] Z. Zhu, W. Zhang, K. Wong and H. Yu, “A chaos-based symmetric image encryption scheme using a bit-level permutation, Information Sciences, Vol. 181, No. 6, pp. 1171–1186, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊