跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林成峰
研究生(外文):Cheng-FengLin
論文名稱:光分碼多重擷取系統中通道非線性干擾之分析及光碼正交性之補償
論文名稱(外文):Compensating Fiber Impairments to Enhance Signal Coding Orthogonality over Optical-CDMA Networks
指導教授:黃振發黃振發引用關係
指導教授(外文):Jen-Fa Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:64
中文關鍵詞:光分碼多重擷取光碼正交性通道損害補償技術
外文關鍵詞:optical code division multiple access (OCDMA)coding orthogonalityfiber impairmentscompensation technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
由於光分碼多重擷取網路容許非同步存取,並且提供已建構的光鏈路中更大的通道容量,因此在近年來逐漸受到重視。而為了避免時域編碼系統中所面臨的諸多限制,採用頻域振幅編碼的光分碼多重擷取系統便被提了出來,它一方面消除了使用者之間的多重存取干擾,同時也維持了用戶間彼此使用的光碼正交性。
然而,透過光纖通道傳輸資訊時,由於通道效應造成基於強度調變/直接檢測之光分碼多重擷取系統之信號間產生非線性干擾,為維持相對的系統效能,致使系統同時可支援的使用者用戶數受到大幅限制。論文中首先利用高斯脈波模型去分析及描述通道的損害因子,分析結果顯示訊號損害與用戶的指配碼權重及系統色散圖參數有關,接著我們進一步地,以理論分析及軟體模擬去探討基於頻域振幅編碼之光分碼多重擷取系統因光碼正交性喪失所造成的效能減損。最後,我們提出了一個簡單、並且相容於原系統架構之通道損害補償技術。

Optical code-division multiple-access (OCDMA) is an attractive scheme to asynchronous access and increase the capacity of the already installed optical links. To avoid some basic limitations that temporal coding scheme were encountered, Spectral-Amplitude-Coding of OCDMA (SAC-OCDMA) is proposed to eliminate the influence of Multiple-Access Interference (MAI) and to preserve the coding orthogonality between network users.
However, the effects of fiber impairment causes nonlinear crosstalk in intensity modulated direct detection OCDMA systems based on dispersive fibers and thus could limit the total number of simultaneous users that such a system can support. Considering the propagation of Gaussian pulses, a formula which describes analytically these detrimental phenomena as a function of the signature code weight and dispersion map parameters is derived and performance degradation due to reduced coding orthogonality is investigated over a spectral-amplitude-coding scheme of OCDMA network. Finally, a compensation technique to combat with fiber impairments on data transmission in SAC-OCDMA systems is proposed.
Chapter.1 Introduction 1
1.1 The Development of OCDMA History 2
1.2 The Classification of OCDMA Technology 4
1.3 The Motivation of Our Research 11
1.4 Sections Preview 12
Chapter.2 Fiber Impairments over OCDMA 14
2.1 The Optical Fiber Channel 14
2.1.1 Basic Pulse-Propagation Equation 14
2.1.2 Linear Impairments in Optical Fibers 18
2.1.3 Fiber Kerr Nonlinearities 22
2.2 Effects of Fiber Impairments over SAC-OCDMA Networks 25
2.2.1 Numerical Methods 25
2.2.2 Theoretical Analysis with Split-Step Fourier Method 28
2.3 Summary of this Chapter 30
Chapter.3 Impairment Effects on Signal Coding Orthogonality 32
3.1 FBG-based SAC-OCDMA System 32
3.1.1 Optical Grating Devices 32
3.1.2 M-Sequence codes 37
3.1.3 System Configuration 38
3.2 Theoretical Results on Losing Coding Orthogonality 40
3.3 Numerical Simulation Results 44
Chapter.4 Nonlinearity Compensation Techniques 46
4.1 Overviews of Nonlinearity Compensation Techniques 46
4.2 FBG-Based OCDMA Codec Structure with XPM suppression 49
4.2.1 Principle of Operation 49
4.2.2 Design of The XPM Suppression Deviceb55
Chapter.5 Conclusion 57
References 58

[1]. R. Dixon, “Why spread spectrum?, IEEE Communications Soc. Mag., vol. 13, pp. 21-25, July 1975.
[2]. R. Scholtz, “The spread spectrum concept, IEEE Transactions on Communications, vol. 25, no. 8, pp. 748-755, August 1977.
[3]. R. Dixon, Spread Spectrum Systems with Commercial Applications, Wiley- Interscience, New York, 1994.
[4]. M. Sust, “Code division multiple access for commercial communications, in Review of Radio Science 1992-1994, pp. 155-179, International Union of Radio Science (URSI).
[5]. D. Grosbie, “The new space race: satellite mobile communications, IEE Review, vol. 39, no. 3, pp. 111-114, May 1993.
[6]. J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles, IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
[7]. J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis, IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, August 1989.
[8]. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg-grating-based spectral-amplitude-coding optical CDMA systems, J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001
[9]. E. Marom and O. G. Ramer, “Encoding-decoding optical fiber network, Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[10]. G. Vannucci, “Combining frequency division multiplexing and code division multiplexing for high capacity optical network, IEEE Network, vol. 3, no. 2, pp. 21-30, March 1989.
[11]. N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review, Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, 1996.
[12]. P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing, IEEE Network, vol. 4, no. 5, pp. 547-554, May 1986.
[13]. W. C. Kwong, P. Perrier and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks, IEEE Transactions on Communications, vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
[14]. K. P. Jackson, G. Xaio and H. J. Shaw, “Coherent optical fiber delay-line processor, Electron. Lett., vol. 22, no. 25, pp. 1335, 1986.
[15]. M. E. Marhic, “Trends in optical CDMA, in Multigigabit Fiber Communications, SPIE Proceedings vol. 1787, pp.80-97, Boston, 1992.
[16]. D. D. Sampson and D. A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation, Electron. Lett., vol. 26, no. 19, pp. 1550-1552, Sept. 1990.
[17]. R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical phase coding for code division multiple access, IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, Dec. 1992.
[18]. D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks, IEEE J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
[19]. J. Enriguz-Gabeiras, J. Camany, and R. Fernandez de Caleya, “ Efeect of non ideal and fiber parameters on the performance of an all optical coherent code division multiple access, in Proceedings of EFOC/LAN’92, pp. 146-151, Paris, June 1992.
[20]. M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems, IEEE Transactions on Communications, vol. 42, no. 2, pp.1801-1810, Feb./Mar./Apr. 1994.
[21]. D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and related sequences, Proceedings of the IEEE, vol. 68, no. 5, 593-619, May 1980.
[22]. M. E. Marhic, “Coherent optical CDMA networks, IEEE/OSA J. Lightwave Technol., vol. 11, no. 5/6, 854-863, May./June. 1993.
[23]. J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems, J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.
[24]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED, IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, 1993.
[25]. M. Kavehrad and D. Zaccarin, “Optical code- division-multiplexed systems based on spectral encoding of non-coherent sources, J. Lightwave Technol., vol. 13, no. 3, pp. 534 -545, March 1995.
[26]. J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes, IEEE Photon. Technol. Letter, vol. 12, pp. 1252-1254, Sept. 2000.
[27]. S.P. Majumder, Afreen Azhari, and F.M. Abbou, “Impact of fiber chromatic dispersion on the BER performance of an optical CDMA IM/DD transmission system, IEEE photon. Technol. lett., vol. 17, no. 6, pp. 1340-1342, June 2005.
[28]. C.H. Chua, F.M. Abbou, H.T. Chuah, and S.P. Majumder, “Performance analysis on phase-encoded OCDMA communication system in dispersive fiber medium, IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 668–670, Feb. 2002.
[29]. E. Ng, G. Weichenberg, and E. Sargent, “Dispersion in multiwavelength optical code-division multiple-access systems: impact and remedies, IEEE Transactions on
Communications, vol. 50, no. 11, pp. 1811–1816, Nov. 2002.
[30]. X. S. Yao, J. Feinberg, R. Logan, and L. Maleki, “Limitations on peak pulse power, pulse width, and coding mask misalignment in a optic-optic code-division multiple-access system, J. Lightwave Technol., vol. 11, pp. 836–846, May 1993.
[31]. A. M. Weiner, C. C. Chang, and H. P. Sardesai, “Femtosecond optical code-division multiple-access, in OSA Trends in Optics and Photonics. Washington, DC: Optical Society of America, 1997.
[32]. T. Pfeiffer, M. Witte, and B. Deppisch, “High-speed transmission of broadband thermal light pulses over dispersive fibers, IEEE Photon. Technol. Lett., vol. 11, pp. 385–387, Mar. 1999.
[33]. L. Chen, “A Bragg about gratings: applications of compound fiber Bragg grating structures in lightwave communications, Ph.D. dissertation, Dept. of ECE, Univ. of Toronto , Toronto, ON, Canada, 2000.
[34]. C. Zuo, W. Ma, H. Pu, and J. Lin, “The impact of group velocity on frequency-hopping optical code division multiple access system, Journal of Ligthwave Technology, vol. 19, no. 10, pp. 1416–1419, Oct. 2001.
[35]. F.M. Abbou, H.Y. Wong, L.H. Hiap, A. Abid, H.T. Chuah, “Performance of Walsh Code and m-Sequence Spectral Phase encoded Time Spreading OCDMA in the Presence of GVD and SPM, Jouurnal of Optical Communications, vol. 28, pp. 145-147, 2007.
[36]. E. Ip and J. M. Kahn, Digital equalization of chromatic dispersion and polarization mode dispersion, J. Lightwave Technol, vol. 25, no. 8, pp. 2033-2043, Aug., 2007.
[37]. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, New York, 2002).
[38]. M. Suzuki and N. Edagawa, Dispersion-managed high-capacity ultra-long-haul transmission, J. Lightwave Technol, vol. 21, no. 4, pp. 916-929, April 2003.
[39]. E. Forestieri and G. Prati, Exact analytical evaluation of second-order PMD
impact on the outage probability for a compensated system, J. Lightwave Technol.,
vol. 22, no. 4, pp. 988-996, April 2004.
[40]. C. D. Poole, R. W. Tkach, A. R. Chraplyvy and D. A.Fishman, Fading in lightwave systems due to polarization-mode dispersion, IEEE Photon. Technol. Lett., vol. 3, no. 1, pp. 68-70, Jan. 1991.
[41]. H. Biilow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Kuppers and W. Weiershausen, Measurement of the maximum speed of PMD fluctuation in installed field fiber, in Proc. Optical Fiber Commun. Conf. (OFC 1999), Paper OWE4, 1999.
[42]. C. D. Poole, Statistical treatment of polarization dispersion in single-mode fiber, Opt. Lett, vol. 13, no. 8, pp. 687-689, Aug. 1988.
[43]. N. Gisin, J.-P. Von der Weid and J.-P. Pellaux, Polarization mode dispersion of short and long single-mode fibers, J. Lightwave Technoi, vol. 9, no. 7, pp. 821-827, July 1991.
[44]. G. J. Foschini and C. D. Poole, Statistical theory of polarization dispersion in single-mode fibers, J. Lightwave Technoi., vol. 9, no. 11, pp. 1439-1456, Nov. 1991.
[45]. H. Biilow, System outage probability due to first- and second-order PMD, IEEE Photon. Technoi. Lett, vol. 10, no. 5, pp. 696-698, May 1998.
[46]. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson and P. Andrekson, A comparison between different PMD compensation techniques, J. Lightwave Technoi., vol. 20, no. 3, pp. 368-378, March 2002.
[47]. F. Buchali and H. Biilow, Adaptive PMD compensation by electrical and optical techniques, J. Lightwave Technoi, vol. 22, no. 4, pp. 1116-1126, April 2004.
[48]. R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Flingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch and W. Haase, Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizer, J. Lightwave Technoi, vol. 17, no. 9, pp. 1602-1616, Sep. 1999.
[49] J. Kerr, “A new relation between electricity and light: Dielectrified media birefringent, Phil. Mag., vol. 50, no. 19, p. 3337, 1875.
[50] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA: Elsevier, 2006.
[51] G. P. Agrawal, Lightwave Technology: Telecommunication Systems. New York: Wiley, 2005.
[52] R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel crossphase modulation and four-wave mixing in high-speed TDM systems, IEE Electron. Lett., vol. 35, pp. 1576–1578, 1999.
[53]A. H. Gnauck, R.W. Tkach, M. Mazurczyk: Interplay of chirp and self phase modulation in dispersion-limited optical transmission systems; Proc. ECOC'93, Montreux (1994), 105-108
[54] G. P. Agrawal: Nonlinear fiber optics; 2nd ed.. Academic Press, San Diego (1995)
[55]. D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber filters, Applied Optics, vol. 20, pp. 440-445, 1981.
[56]. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method, Optics Letters, vol. 14, pp. 823-825, 1989.
[57] E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C. R. Davidsen, F. I. Khatri, R. M. Kimball, and V. J. Mazurczyk, “Modeling of transoceanic fiber-optic WDM communications systems, IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 337–347, Mar./Apr. 2000.
[58]. H. Suzuki, J. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada and M. Sumida, 1-Tb/s (100 × 10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology, IEEE Photon. Technol. Lett., vol. 12, pp. 903 -905, Jul. 2000.
[59]. T. Chiang, N. Kagi, M. E. Marhic, and L. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators, J. Lightwave Technol., vol. 14, pp. 249–260, Mar. 1996.
[60]. G. Bellotti, M. Varani, C. Francia, and A. Bononi, “Intensity distortion induced by cross-phase modulation and chromatic dispersion in optical- fiber transmissions with dispersion compensation, IEEE Photon. Technol. Lett., vol. 10, pp. 1745–1747, Dec. 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top