跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:湯智傑
研究生(外文):Chih-ChiehTang
論文名稱:在感知無線隨意網路中針對頻譜認知按需路由的叢集式鏈結修復機制
論文名稱(外文):A Cluster-based Link Recovery Mechanism for Spectrum Aware On-demand Routing in Cognitive Radio Ad Hoc Networks
指導教授:斯國峰
指導教授(外文):Kuo-Feng Ssu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:35
中文關鍵詞:感知無線電按需路由鏈結修復
外文關鍵詞:cognitive radiospectrum aware on-demand routinglink recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在感知無線隨意網路中,當不具使用執照的次要使用者使用需有執照的頻帶時,擁有執照的主要使用者佔用了頻帶會導致次要使用者的鏈結錯誤。許多關於感知無線隨意網路路由協定的研究,都是利用按需路由協定的架構以訂定適合於感知無線隨意網路的協定。這些研究直接採用傳統按需路由的維護路由機制,並且未針對感知無線隨意網路特有的情況做出改良。傳統的維護路由機制為重新建構路由,一旦發生鏈結錯誤,在路由被修復之前,會造成很多資料封包遺失。且傳統的按需路由是針對行動隨意式網路而提出。維護路由機制可以再加以改良以適合於感知無線隨意網路。本篇論文提出一個叢集式鏈結修復機制。不同於重新建構路由的方式,此機制為修復每個錯誤的鏈結而不改變原本建構的路由。因此,當鏈結錯誤發生,資料封包可暫存於次要使用者的暫存器中。等到鏈結成功修復後,便可將這些資料封包傳送出去,減少封包遺失。此外,藉由觀察發現,若次要使用者位於所有擁有執照的主要使用者的通信範圍區域內,不論次要使用者用哪個頻帶,都有很高的機率受到主要使用者的影響,此機制藉由叢集式的方法修復所有此區域內所有的鏈結錯誤。此機制有效提升點對點吞吐量和封包成功送達比例。
In cognitive radio ad hoc networks (CRAHNs), link failures among secondary users (SUs) primarily result from sudden appearance of primary users (PUs). Many researches about routing protocols in CRAHNs apply on-demand routing protocols. They usually adopt the route recovery process of traditional on-demand routing protocols without modification in CRAHNs. In traditional route recovery process, nodes with link failure drops data packets and sends route error packets (RERRs) to source nodes to find new routes. Much packet loss occurs until the routes are recovered. And traditional on-demand routing protocols are proposed for mobile ad hoc networks (MANETs). There can be some improvement in route recovery mechanism in CRAHNs. This thesis proposes a cluster-based link recovery mechanism (CLR) for AODV in CRAHNs. Different from the traditional method of route reestablishment, CLR recovers failed links locally and the original routes do not change. Because the original routes do not change, the data packets can be cached in the buffer. After the links are recovered, data packets can be sent. The amount of packet loss decreases. Furthermore, this thesis observes that if there is an intersection area of all PUs' radio coverage in the network, and there are some SUs in the area. No matter what channels these SUs choose, links between these SUs are apt to break. CLR can recover all link failures by using clustering method and effectively increases end-to-end throughput and successful packet delivery fraction.
Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Route Discovery of AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Route Discovery of AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Channel Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Cluster-based Link Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Link Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Cluster-based Link Recovery . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Compare CLR with Route Recovery of AODV . . . . . . . . . . . . 20

5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Coverage Range of PUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Number of Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Number of PUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
[1] Spectrum Policy Task Force, Federal Communications Commission ET Docket, Nov. 2002.

[2] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, Next Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey, Computer Networks, vol. 50, no. 13, pp. 2127-2159, Sept. 2006.

[3] I. F. Akyildiz, W. Y. Lee, and K. R. Chowdhury, CRAHNs: Cognitive Radio Ad Hoc Networks, Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, July 2009.

[4] N. S. Yadav and R. P. Yadav, Performance Comparison and Analysis of Table-driven and On-demand Routing Protocols for Mobile Ad Hoc Networks, International Journal of Information and Communication Engineering, vol. 4, no. 6, pp.411-419, Summer 2008.

[5] S. J. Lee, M. Gerla, and C. K. Toh, A Simulation Study of Table-driven and On-demand Routing Protocols for Mobile Ad Hoc Networks, IEEE Network, vol. 13, no. 4, pp. 48-54, July/Aug. 1999.

[6] K. U. R. Khan, R. U. Zaman, and A. V. Reddy, Performance Comparison of On-Demand and Table Driven Ad Hoc Routing Protocols Using NCTUns, in International Conference on Computer Modeling and Simulation, Apr. 2008, pp. 336-341.

[7] I. Vijaya, P. Mishra, A. Dash, and A. Rath, Influence of Routing Protocols in Performance of Wireless Mobile Ad Hoc Network, in International Conference on Emerging Applications of Information Technology, Feb. 2011, pp. 340-344.

[8] A. Sampath, L. Yang, L. Cao, H. Zheng, and B. Y. Zhao, High Throughput Spectrum Aware Routing for Cognitive Radio Networks, in International Conference on Cognitive Radio Oriented Wireless Networks and Communications, May 2008.

[9] K. R. Chowdhury and M. D. Felice, SEARCH: A Routing Protocol for Mobile
Cognitive Radio Ad Hoc Networks, in IEEE Sarno Symposium, Apr. 2009, pp. 1-6.

[10] G. Cheng, W. Liu, Y. Li, and W. Cheng, Spectrum Aware On-demand Routing in Cognitive Radio Networks, in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Apr. 2007, pp. 571-574.

[11] H. Ma, L. Zheng, X. Ma, and Y. Luo, Spectrum Aware Routing for Multi-hop Cognitive Radio Networks with a Single Transceiver, in International Conference on Cognitive Radio Oriented Wireless Networks and Communications, May 2008, pp. 1-6.

[12] P. Salvo, F. Cuomo, and A. Abbagnale, Hidden Primary User Awareness in Cognitive Radio Routing: The SBBO Protocol, in IEEE Global Telecommunications Conference, Dec. 2010, pp. 1-5.

[13] S. M. Kamruzzaman, E. Kim, and D. G. Jeong, Spectrum and Energy Aware Routing Protocol for Cognitive Radio Ad Hoc Networks, in IEEE International Conference on Communications, June 2011, pp. 5-9.

[14] I. Beltagy, M. Youssef, and M. El-Derini, A New Routing Metric and Protocol for Multipath Routing in Cognitive Networks, in IEEE Wireless Communications and Networking Conference, Mar. 2011, pp. 974-979.

[15] J. Jia, J. Zhang, and Q. Zhang, Relay-assisted Routing in Cognitive Radio Networks, in IEEE International Conference on Communications, June 2009, pp. 1-5.

[16] M. Cesana, F. Cuomo, and E. Ekici, Routing in Cognitive Radio Networks: Challenges and Solutions, Ad Hoc Networks, vol. 9, pp. 228-248, May 2011.

[17] C. Xin, B. Xie, and C. C. Shen, A Novel Layered Graph Model for Topology Formation and Routing in Dynamic Spectrum Access Networks, in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005, pp. 308-317.

[18] Q. Wang and H. Zheng, Route and Spectrum Selection in Dynamic Spectrum Networks, in IEEE Consumer Communications and Networking Conference, vol. 1, Jan. 2006, pp. 625-629.

[19] M. Alicherry, R. Bhatia, and L. E. Li, Joint Channel Assignment and Routing for Throughput Optimization in Multiradio Wireless Mesh Networks, IEEE Journal on Selected Areas in Communications, vol. 24, no. 11, pp. 1960-1971, Nov. 2006.

[20] K. F. Li, W. C. Lau, and O. C. Yue, Link Restoration in Cognitive Radio Networks, in IEEE International Conference on Communications, May 2008, pp. 371-376.

[21] C. F. Shih and W. Liao, Exploiting Route Robustness in Joint Routing and Spectrum Allocation in Multi-hop Cognitive Radio Networks, in IEEE Wireless Communications and Networking Conference, Apr. 2010, pp. 1-5.

[22] G. Chen, F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic, Connectivity Based K-hop Clustering in Wireless Networks, in Hawaii International Conference on System Sciences, Jan. 2002, pp. 2450-2459.

[23] M. Gerla and J. T. Tsai, Multicluster, Mobile, Multimedia Radio Network, Wireless Networks, vol. 1, no. 3, pp. 255-265, Aug. 1995.

[24] L. Ding, T. Melodia, S. Batalama, and M. J. Medley, ROSA: Distributed Joint Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks, in International conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2009, pp. 13-20.

[25] The Network Simulator, http://www.isi.edu/nsnam/ns/.

[26] Cognitive Radio Cognitive Network Simulator, http://stuweb.ee.mtu.edu/_ljialian/.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top