跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉峻辰
研究生(外文):Jun-ChenLiu
論文名稱:Ad-hoc網路吞吐量最佳化
論文名稱(外文):Optimization of Ad-hoc network's throughput
指導教授:郭文光
指導教授(外文):Wen-Kuang Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:29
中文關鍵詞:最佳化Ad-hoc網路
外文關鍵詞:OptimizationAd-hoc network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於通訊網路的蓬勃發展,相對的對於能源的需求是越來越大,但是在這能源日漸短缺且昂貴的現在,本篇論文主要探討的是Ad-hoc網路的吞吐量最佳化,利用跨層最佳化的概念去針對網路的流量分配、排程與功率控制等方法讓效率可以更好。原本的網路模型是NP-hard的混合整數非線性規劃問題,將其全部轉換成多項式最佳化問題(Polynomial optimization problem簡稱POP),利用工具將POP問題轉成SDP(Semidefinite programming,半正定規劃)問題去直接求解。但是最後結果發現無法找到接近0-1整數的最佳解。
In the recent years, the energy demand is growing. The energy is shortage and expensive. We focus on the Optimization of Ad-hoc network's throughput. We Consider Flow distribution、Scheduling and Power Control base on the concept of cross-layer optimization. The original problem is a mixed-integer nonlinear programming . We transform it into a Polynomial optimization problem, and use some MATLAB package to transform the POP form into Semidefinite programming(SDP) form. Finally we cannot get the optimal solution with the integer 0-1.
目錄
第一章 簡介---------------------------------------------1
第二章 網路架構與限制條件---------------------------------3
2.1 Ad-hoc網路系統……………………………………………………………3
2.2 限制條件………………………4
2.2.1 時間排程……………………………6
2.2.2 功率控制……………………………6
2.2.3 通道容量限制………………………7
2.2.4 路由…………………………………8
2.3 最佳化模型……………………9
第三章 求解程序------------------------------------------11
3.1 Chebyshev 多項式近似…………………………11
3.2 半正定規劃…………………………………………13
3.2.1 Lasserre 多項式規劃的dense SDP放鬆……14
3.2.2 Primal-Dual內點法……………………………17
3.2.3弦圖與Cholesky分解……………………………23
3.2.4多項式最佳化問題的稀疏半正定規劃放鬆……24
第四章 數據模擬結果---------------------------------26
第五章 結論----------------------------------------27
參考文獻--------------------------------------------28
[1] Sunyoung Kim and Masakazu Kojima, Exploiting Sparsity in SDP Relaxation of Polynomial Optimization Problems
[2] Numerical Recipes Software, numerical recipes in c the art of scientific computing, 5.8 Chebyshev Approximation
[3] Yi Shi, Member, IEEE, Y. Thomas Hou, Senior Member, IEEE, and Huaibei Zhou, Per-Node Based Optimal Power Control for Multi-hop Cognitive Radio Networks, IEEE Transactions on Wireless Communications, vol. 8, no.10
[4]R. M. et al. Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Infocom, 2005.
[5]M. L. Sichitiu. cross-layer scheduling for power e_ciency in wireless sensor networks. IEEE Infocom,2004.
[6]M. Chiang. To layer or not to layer: Balancing transport and physical layers in wireless multihop networks. IEEE Infocom, 4, 2004.
[7]L. Bui, A. Eryılmaz, and R. Srikant. Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. Department of Electrical and Computer Engineering.
[8]L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Optimal cross-layer congestion control, routing and scheduling design in ad hoc wireless network.
[9]B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition techniques for distributed cross-layer optimization of data networks. IEEE Journal on Selected Areas in Communications
[10]M. Johansson and L. Xiao. Cross-layer optimization of wireless networks using nonlinear column generation. IEEE Transactions on Wireless Communications
[11]S. J. Kim, X. Wang, and M. Madihian. Cross-layer design of wireless multihop backhaul networks with multiantenna beamforming. IEEE Trans. Mob. Comput
[12]J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed protocols for cross-layer design of physical and transport layers in manets. IEEE Trans. on Networking
[13] H. Waki, S. Kim,M. Kojima, M. Muramatsu, H. Sugimoto and M. Yamashita User Manual for SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems
[14] Hayato Waki¤, Sunyoung Kimy, Masakazu Kojimaz, Masakazu Muramatsux ,
Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
[15] Hayato Waki, Sunyoung Kim,Masakazu Kojima and Masakazu Muramatsu SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems
[16] Zai-En Hou,, Ke-Cun Zhang . Approximation of multivariate function by using new multivariate Bernstein a-polynomials
[17] Kamron Saniee .A Simple Expression for Multivariate Lagrange Interpolation

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top