跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林永權
研究生(外文):Yung-ChuanLin
論文名稱:第3.9代蜂巢式系統之初始細胞搜尋與下行鏈路同步技術
論文名稱(外文):Initial Cell Search and Downlink Synchronization Schemes for 3.9G Cellular Systems
指導教授:蘇賜麟
指導教授(外文):Szu-Lin Su
學位類別:博士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:66
中文關鍵詞:長程演進初始細胞搜尋主要同步訊號次要同步訊號
外文關鍵詞:Long Term Evolution (LTE)initial cell searchprimary synchronization signal (PSS)partial correlation scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
無線寬頻存取很重要的一個步驟,是下行鏈路(downlink)剛建立時接收端所執行的訊號偵測、時間與載波頻率的同步及搜尋目前所屬的細胞基地台,這個動作就是所謂的初始細胞搜尋(initial cell search)。一般要完成以上動作,基地台會傳送額外的引導符元以供行動台辨認之用。3.9G 行動無線寬頻技術,包含了全球互通微波存取(WiMAX)與長期演進技術(LTE)。IEEE 802.16e即是針對WiMAX系統應用於移動性環境而設計的標準,其preamble在時域上沒有完美的週期性,加上所使用的PN code種類多、長度長。因此,傳統偵測Cell ID的方法複雜度很高;在3GPP LTE系統利用的是兩個同步訊號 - 主要同步訊號(Primary Synchronization Signal,PSS)與次要同步訊號(Secondary Synchronization Signal,SSS)。本論文首先詳細說明同步及細胞搜尋的各項流程,針對此兩系統之preamble同步訊號,分別提出了數種創新的演算法,並且將模擬結果與現有文獻相比。本文提出的方法除了能有效減少細胞搜尋的錯誤率,最重要的是能更準確的估測整數倍載波頻率偏移(ICFO)並且修正之,進而改善系統效能。另一項優點則是具有較低的運算複雜度。
此外,無線通訊系統要維持良好的性能表現,一個很重要的步驟是運用有限的領航訊號(pilot)進行通道估測。由於使用者的移動造成通道的變化,加上802.16e的領航訊號在頻域上不完全規則的排列方式,這些因素都增加了通道估測的困難度。在本論文中,我們提出適用於WiMAX系統以離散傅立葉轉換(Discrete Fourier Transform; DFT)為基礎之通道估計(DFT-based Channel Estimation)方法。透過不同的通道模型模擬下,本論文所提出的方法,可提供精準的估測結果。
In cellular communication systems the mobile station (MS) must perform initial synchronization and search for a base station with best signal quality to set up the downlink access. This process is the well-known initial cell search. The 3.9G mobile wireless wideband technology consists of the Worldwide Interoperability for Microwave Access (WiMAX) and the Long Term Evolution (LTE). IEEE 802.16e is the specifications designed for the WiMAX system in applications of mobile environments. Its time-domain preamble does not have the perfect periodicity for time synchronization. Two synchronization signals, the primary synchronization signal (PSS) and the secondary synchronization signal (SSS), are periodically emitted from the base station in the 3GPP LTE system. In this dissertation all the procedures of synchronization and the initial cell search, including the theoretical analysis and deduction, are provided. Secondly, several innovative algorithms are proposed and their simulations are compared with those of the existing ones. The results confirm that the proposed algorithms are able to reduce the error rates of cell search. Moreover, they can estimate ICFO more accurately and efficiently. Finally, the proposed schemes also reduce the computational complexity.
In order to achieve robust performance, one of the most important steps is the channel estimation based on the limited number of pilot signals. Owing to the channel’s time variant characteristics caused by user’s mobility and the irregular arrangement of the pilot signals, the exact channel estimation is more difficult to achieve for the 802.16e system. In this dissertation a DFT-based Channel Estimation is proposed to apply to the WiMAX system. The proposed scheme is capable of providing excellent system performances under various channel environments.
Chinese Abstract i
English Abstract ii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 The WiMAX System 1
1.2 The LTE System 2
1.3 DFT-Based Channel Estimation Scheme 4
Chapter 2 System Description 7
2.1 WiMAX – IEEE 802.16e OFDMA System Model 7
2.1.1 Frame Structure 8
2.1.2 System description 10
2.1.3 Simulation Environment 12
2.2 LTE Frame Structure 12
2.2.1 Downlink Synchronization Signals 13
2.2.1.1 Primary Synchronization Signal (PSS) 14
2.2.1.2 Secondary Synchronization Signal (SSS) 15
2.2.2 Simulation Environment 16
Chapter 3 Conventional Schemes for Cell Search 18
3.1 WiMAX System 19
3.2 LTE Frame Structure 21
Chapter 4 Proposed Scheme 27
4.1 Initial Cell Search for WiMAX System 27
4.1.1 Choosing the Most Possible Subcarrier Sets 28
4.1.2 Preamble Identification and ICFO Detection 30
4.2 Initial Cell Search for LTE System 31
4.2.1 JDISI-PD 32
4.2.1.1 Detection of ICFO by Phase 32
4.2.1.2 Alternative Choice of Root Indices 35
4.2.2 JDISI-PC 39
Chapter 5 DFT-Based Channel Estimation Scheme for IEEE 802.16e OFDMA Systems 47
5.1 Mitigate Edge Effect 47
5.2 Time Domain Processing 48
5.3 Proposed DFT-Based Channel Estimation Scheme 49
5.4 Summary 56
Chapter 6 Simulation Results 57
Chapter 7 Conclusion 61
Reference 63
[1] Draft IEEE std 802.16e Rev2/D1. IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, October 2007
[2] IEEE std 802.11a. WLAN Medium Access Control MAC and Physical Layer PHY specifications: High-Speed Physical Layer in the 5GHz Band, 1999.
[3] M. K. Song and V. K. Bhargava, “Performance analysis of cell search in W-CDMA system over Rayleigh fading channels, IEEE Trans. Veh. Technol., vol. 51, pp. 749-759, July 2002.
[4] Michael Mao Wang, Avneesh Agrawal, Aamod Khandekar, and Sandeep Aedudodla “Preamble Design, System Acquisition, and Determination in Modern OFDMA Cellular Communications: An Overview, IEEE Communications Magazine, vol. 49, pp.164-175, July 2011.
[5] Y.-P. E. Wang and T. Ottosson, “Cell search in W-CDMA, IEEE J. Sel. Areas Commun., vol. 18, pp. 1470-1482, Aug. 2000.
[6] 3GPP TS 36.211 V8.7.0, “Physical Channels and Modulation, May 2009.
[7] Moray Rumney, “LTE and the Evolution to 4G Wireless: Design and Measurement Challenges, Agilent Technologies, June 2009.
[8] Ilgyu Kim, Youngnam Han, Hyun Chung, “An efficient synchronization signal structure for OFDM-based cellular systems, IEEE Trans. Wireless Commun., vol. 9, pp. 99-105, Jan. 2010.
[9] Feng Wang, Yu Zhu, Zongxin Wang, “A Low Complexity Scheme for S-SCH Detection in 3GPP LTE Downlink System, IEEE Mobile Congress (GMC), 2010 Global, pp.1-6, Oct. 2010.
[10] Jung-In Kim, Jung-Su Han, Hee-Jin Roh, and Hyung-Jin Choi, “SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver, IEEE International Symposium on Communications and Information Technology, pp. 199-203, Sept. 2009.
[11] Yingming Tsai, Guodong Zhang, Donald Grieco, Faith Ozluturk, and Xiaodong Wang, “Cell search in 3GPP long term evolution systems, IEEE Veh. Tech. Mag., vol. 2, issue 2, pp. 23-29, June 2007.
[12] Setiawan H., Ochi H., “A low complexity physical-layer identity detection for 3GPP Long Term Evolution, IEEE International Conference on Advanced Communication Technology, pp. 8-13, Feb 2010.
[13] Hao Cao, Chixiang Ma, Ping Lin, “An Area-efficient Implementation of Primary Synchronization Signal Detection in LTE, IEEE International Conference on Communication Technology, pp. 722-725, Jan. 2010.
[14] Y. Yang, W. Che, N. Yan, X. Tan, and H. Min, “Efficient implementation of primary synchronization signal detection in 3GPP LTE downlink, ELECTRONICS LETTERS, vol. 46 No. 5, Mar. 2010.
[15] Pei-Yun Tsai, and Hsiang-Wei Chang, “A New Cell Search Scheme in 3GPP Long Term Evolution Downlink OFDMA Systems, IEEE WCSP, pp. 1-5, Nov. 2009.
[16] Hao Ni, Guangliang Ren, Yilin Chang, “Complexity Effective Cell Search Scheme for OFDM Cellular System, IEEE International Conference on Communication Systems, pp. 700-704, Nov. 2010.
[17] Manolakis, K., Gutierrez Estevez, D.M., Jungnickel, Van Wen Xu and Drewes, C. “A Closed Concept for Synchronization and Cell Search in 3GPP LTE Systems, IEEE WCNC, pp. 1-6, Apr. 2009.
[18] 3GPP TS 36.101 v8.9.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 8), 3rd Generation Partnership Project, Tech. Rep., Dec. 2009, 3GPP.
[19] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. BAorjesson, OFDM Channel Estimation by Singular Value Decomposition IEEE Transctions on Communications, Vol46, No 7, July 1998.
[20] J.-J. van de Beek, O. Edfors, M. Sandell, S.K. Wilson, P.O. Borjesson, on channel estimation in ofdm system, IEEE 45th Vehicular Technology Conference, vol. 2, pp 815-819, July 1995.
[21] S. Coleri, M. Ergen, A. Puri, A. Bahai, Channel estimation techniques based on pilot arrangement in OFDM systems, IEEE Transactions on Broadcasting, vol. 48, no. 3, pp 223-229, Sept. 2002.
[22] Hao-Han Hsu, Chih-Wei Chen, and Gene C.H. Chung, Windowed DFT-Based OFDM Channel Estimation by Adding Virtual Channel frequency Response, IEEE WCOM, pp 1-5, Sep. 2009.
[23] Xiaolin Hou, Zhan Zhang and Kayama, H. Low-Complexity Enhanced DFT-based Channel Estimation for OFDM Systems with virtual Subcarriers, IEEE Personal, Indoor and Mobile Radio Communications, pp 1-5, Sept. 2007.
[24] Y. Kang, K. Kim, and H.Park, Efficient DFT-based channel estimation for OFDM systems on multipath channels IET Communications, vol. 1, no. 2, pp 197-202, Apr. 2007.
[25] David C. Chu, “Polyphase Codes with Good Periodic Correlation Properties, IEEE Trans. on Information Theory, vol. 18, pp. 531-532, Jul. 1972.
[26] B. M. Popovic, “Generalized Chirp-Like Polyphase Sequences with Optimum Correlation Properties, IEEE Trans. Info. Theory, vol. 38, July 1992, pp. 1406–09.
[27] C. Ma, Hao Cao, and Ping Lin, “A Low-Power Low-Cost Design of Primary Synchronization Signal Detection, IEEE Trans. on VLSI Systems, pp. 1-6, 2011
[28] 3GPP TS 36.101 v8.9.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 8), 3rd Generation Partnership Project, Tech. Rep., Dec. 2009, 3GPP.
[29] Cheng P, Zhang Z-Y, Zhou X, Li J, Qiu P. A study on cell search algorithms for IEEE 802.16e ofdma systems. In: Proceedings of IEEE WCNC 2007, 2007. p. 1848–53.
[30] T Bhatt, V Sundaramurthy, J Zhang, D McCain. Initial synchronization for 802.16e downlink. In: Signals, Systems and Computers, 2006. ACSSC '06. p.701-706.
[31] Jung Ju Kim, Jung Ho Noh and Kyung Hi Chang, “Robust timing & frequency synchronization techniques for OFDM-FDMA systems, Signal Processing Systems Design and Implementation, 2005. IEEE Workshop on 2-4 Nov. 2005. p. 716 – 719.
[32] J.van de Beek, M.Sandel, P.O. Borjesson, “ML Estimation of Timing and Frequency Offset in OFDM systems, IEEE Trans. on signal processing, vol. 45, no. 3, pp. 1800-1805, July 1997.
[33] Awoseyila A.B., Kasparis C., Evans B.G., “Robust time-domain timing and frequency synchronization for OFDM systems, IEEE Trans. Consumer Electronics, vol. 55, no. 2, pp. 391 – 399, May 2009.
[34] S. Ma, X. Pan, Guang-Hua Yang, Tung-Sang Ng, “Blind Symbol Synchronization Based on Cyclic Prefix for OFDM Systems, IEEE Trans on Veh. Technol., vol. 58, no. 4, pp. 1746 – 1751, May 2009.
[35] T. Dateki, D. Ogawa, H. Furukawa, New OFDM Channel Estimation Method by Adding a Virtual Channel Frequency Response, IEEE 64th Vehicular Technology Conference, VTC-2006, pp 1-5, Sep. 2006.
[36] John G. Proakis (2000). Digital Communications (4th ed.), McGraw-Hill, New York, NY.
[37] Athanasios Papoulis (1991). Probability, Random Variables, and Stochastic Processes (3rd ed.), McGraw-Hill, New York, NY.
[38] Y. C. Lin, S. L. Su, and S. Y. Wu, “A Low Complexity Cell Search Method for IEEE 802.16e OFDMA Systems, IEEE ICACT, Korea, Feb. 2009.
[39] L.-C. Wung, Y.-C. Lin, Y.-J. Fan, and S.-L. Su, “A robust scheme in downlink synchronization and initial cell search for 3GPP LTE system, ISWPC, Hong Kong, China, Feb. 2011.
[40] S. L. Su, Y. C. Lin, C. C. Hsu, and Gene C. H. Chuang, “A DFT-Based Channel Estimation Scheme for IEEE 802.16e OFDMA Systems, IEEE ICACT, Korea, Feb. 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top