|
[1] [Online]. Available: http://bbs.chinaemu.org/read-htm-tid-88418.html [2] E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision, Computation Models of Visual Processing, M. Landy and J. A. Movshon, Eds. Cambridge, MA: MIT Press, 1991, pp. 3-20. [3] B. E. Bayer, Color imaging array, U.S. Patent 3 971 065, 1976. [4] W. Chen, Y. Shi, and G. Xuan, Identifying computer graphics using hsv color model and statistical moments of characteristic functions, in Multimedia and Expo, 2007 IEEE International Conference on, july 2007, pp. 1123 -1126. [5] J. A. Ferwerda, Three varieties of realism in computer graphics, Proc. SPIE Human Vision and Electronic Imaging, San Jose, CA, 2003, pp. 290V297. [6] M. K. C. G. S. Lin and S. T. Chiu, A feature-based scheme for detecting and classifying video-shot transitions based on spatio-temporal analysis and fuzzy classi cation, International Journal of Pattern Recognition and Arti cial Intelligence, vol. 23, no. 6, pp. 11791200, 2009. [7] M. F. C. D. P. G. G. W. Meyer, H. E. Rushmeier and K. E. Torrance, An experimental evaluation of computer graphics imagery, ACM Trans. Graph., vol. 5, no. 1, pp. 30-50, Jan. 1986. [8] A. Gallagher, Detection of linear and cubic interpolation in jpeg compressed images, in Computer and Robot Vision, 2005. Proceedings. The 2nd Canadian Conference on, may 2005, pp. 65 - 72. [9] A. Gallagher and T. Chen, Image authentication by detecting traces of demosaicing, in Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on, june 2008, pp. 1 -8. [10] M. Grossberg and S. Nayar, What is the space of camera response functions? in Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, june 2003, pp. II - 602-9 vol.2. [11] G. Healey and R. Kondepudy, Radiometric ccd camera calibration and noise estimation, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 16, no. 3, pp. 267 -276, mar 1994. [12] T. Ianeva, A. de Vries, and H. Rohrig, Detecting cartoons: a case study in automatic video-genre classi cation, vol. 1, pp. I - 449-52 vol.1, july 2003. [13] J. F. J. Lukas and M. Goljan, Digital camera identi cation from sensor noise, IEEE Trans. Inform. Sec. Forensics, vol. 1, no. 2, pp. 205V214, June 2006. [14] M. Levoy and P. Hanrahan, Light eld rendering, ACM SIGGRAPH, New Orleans, LA, 1996, pp. 31V42. [15] S. Lyu and H. Farid, How realistic is photorealistic? Signal Processing, IEEE Transactions on, vol. 53, no. 2, pp. 845 - 850, feb. 2005. [16] T. T. Ng, Statistical and geometric methods for passive-blind image forensics, Ph. D. Research Work Columbia University,2007. [17] T. T. Ng and S. F. Chang, Identifying and pre ltering images: Distinguishing between natural photography and photorealistic computer graphics, IEEE SIGNAL PROCESSING MAGAZINE pp.49- 58,MARCH 2009. [18] J. Nicodemus, F.E. Richmond, H. J.J., I. Ginsberg, and T. Limperis, Geometric considerations and nomenclature for reflectance, Monograph 160, National Bureau of Standards (US). [19] A. Pentland, Image and vision computing, On describing complex surface shapes (1985). 3(4):153-162. [20] P. Sutthiwan, X. Cai, Y. Shi, and H. Zhang, Computer graphics classi cation based on markov process model and boosting feature selection technique, in Image Processing (ICIP), 2009 16th IEEE International Conference on, nov. 2009, pp. 2913 -2916. [21] Y. H. L. X. T.T. Ng, S.F. Chang and M. Tsui, Physics-motivated features for distinguishing photographic images and computer graphics, ACM Multimedia, Singapore, 2005, pp. 239V248. [22] Y. Wang and P. Moulin, On discrimination between photorealistic and photographic images, IEEE Int. Conf. Acoustics, Speech, and Signal Processing(ICASSP), Toulouse, France, 2006.
|