跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佑瑋
研究生(外文):You-WeiLin
論文名稱:可調多項式攻擊法應用於雜湊函數之研究
論文名稱(外文):An improvement of cube attacks on hash functions
指導教授:楊家輝楊家輝引用關係
指導教授(外文):Jar-Ferr Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:雜湊函數MD6PHOTON可調多項式攻擊法可調多項式識別攻擊
外文關鍵詞:Hash functionMD6PHOTONCube attackCube tester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
雜湊函數廣泛應用於通訊、安全計算等許多領域,可提供資料完整性、不可否認性等安全性質,以作為電子簽章、身分認證等密碼系統的重要關鍵。近年各種破密方法陸續被提出,證明某些常用雜湊函數是不安全,如MD5與SHA-1,因此許多新雜湊函數被提出以因應,如MD6與PHOTON。Dinur和Shamir在2009年歐洲密碼會議,提出一種新型態代數攻擊法,稱為可調多項式攻擊法,之後更延伸為可調多項式識別攻擊。這兩種攻擊分屬金鑰復原攻擊與識別攻擊,皆可廣泛應用於破解任何種類之密碼器,已知用於破解區塊加密器、串流加密器及雜湊函數等。本論文深入研究MD6與PHOTON雜湊函數,並探討可調多項式攻擊法與可調多項式識別攻擊,且實作於簡化版本之PHOTON與MD6;實作過程中,我們改善平行化功能,以增進攻擊效率,且提出一個快速驗證方法,可立即驗證實驗結果之正確性。根據實驗結果,我們分析PHOTON與MD6之安全性,並探討如何規劃實驗,以擁有較佳攻擊成果。最後提出建議如何搭配使用這兩項攻擊法,可兼具兩者優點,以判斷密碼元件之安全性。藉由實作,本論文可提供實作的觀點,供密碼系統設計者與攻擊者參考。
The hash function is widely used in the communications, secure computing and many other fields. It can provide many secure properties such as integrity and non-repudiation, and becomes the key technology in the protection of the security of the electronic signatures, identity authentications, and other cryptographic systems. Recently, many cryptanalysis show some well-known hash functions, like MD5 and SHA-1, are insecure. As a result, many new hash functions, such as MD6 and PHOTON, are developed. In 2009, Dinur and Shamir proposed the cube attack which belongs to key-recovery attack, and extended it to cube tester which is a kind of distinguisher attack. These attacks can be applied to block ciphers, stream ciphers and hash functions. In this thesis, we study MD6 and PHOTON hash functions, and successfully apply cube attacks and cube testers to reduced-round variants of MD6 and PHOTON. In implementations, we improve cube attack in a parallelized way for better efficiency, and propose a new validation method to verify the correctness of the cube attack results. According to our experiments, we analyze the security of MD6 and PHOTON, and discuss how to choose experiment parameters for better attack results. Finally, for combining both advantages, we suggest how to use these two attacks to analyze cryptographic primitives. This thesis could provide view of implementation for both cryptosystems designer and cryptanalysts.
目錄
1. 介紹 1
1.1. 研究動機 1
1.2. 研究貢獻 3
1.3. 論文架構 4
2. 相關工作 5
2.1. 雜湊函數之介紹 5
2.1.1. PHOTON雜湊函數 7
2.1.1.1. PHOTON雜湊函數之簡介 7
2.1.1.2. PHOTON雜湊函數之結構與規格 7
2.1.1.3. PHOTON雜湊函數之安全性分析 10
2.1.1.4. PHOTON雜湊函數之實作測試 12
2.1.2. MD6雜湊函數 13
2.1.2.1. MD6雜湊函數之簡介 13
2.1.2.2. MD6雜湊函數之結構與規格 14
2.1.2.3. MD6雜湊函數之安全性分析 15
2.1.2.4. MD6雜湊函數之實作測試 15
2.2. 可調多項式攻擊法(Cube Attack) 16
2.2.1. 預處理階段(Preprocessing Phase) 17
2.2.2. 攻擊階段(Online Attack) 20
2.2.3. 實例說明 20
2.3. 可調多項式識別攻擊(Cube Tester) 24
3. 針對PHOTON雜湊函數的攻擊實作 27
3.1. 可調多項式攻擊法之實作 27
3.1.1. 攻擊規劃 27
3.1.2. 攻擊流程 28
3.1.3. 實作程式 32
3.1.4. 實驗結果 35
3.1.5. 分析 36
3.2. 可調多項式識別攻擊之實作 39
3.2.1. 攻擊規劃 39
3.2.2. 攻擊流程 39
3.2.3. 實作程式 42
3.2.4. 實驗結果 44
3.2.5. 分析 45
4. 針對MD6的攻擊實作 47
4.1. 可調多項式攻擊法之實作 47
4.1.1. 攻擊規劃 47
4.1.2. 攻擊流程 48
4.1.3. 實作程式 50
4.1.4. 實驗結果 53
4.1.5. 分析 54
4.2. 可調多項式識別攻擊之實作 55
4.2.1. 攻擊規劃 55
4.2.2. 攻擊流程 55
4.2.3. 實作程式 58
4.2.4. 實驗結果 59
4.2.5. 分析 60
5. 結論與未來發展 61
5.1. 結論 61
5.2. 未來發展 62
參考資料 65


參考資料
[1] J. Aumasson, I. Dinur, W. Meier, and A. Shamir, “Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium, Fast Software Encryption, 2009.
[2] G. V. Bard, N. T. Courtois, J. Nakahara Jr, P. Sepehrdad and B. Zhang, “Algebraic, AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers, 2011.
[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST SP800-57: Recommendation for Key Management, which is available at http://csrc.nist.gov /publications/PubsSPs.html, May 2007.
[4] G. Bertoni, J. Daemen, M. Peeters, and G. Assche, “Sponge functions, Ecrypt Hash Workshop, 2007.
[5] G. Bertoni, J. Daemen, M. Peeters, and G. Assche, “Distinguisher and Related-Key Attack on the Full AES-256, CRYPTO, 2009.
[6] C. Boura, A. Canteaut and C. De Cannière, “Higher-Order Differential Properties of Keccak and Luffa, Fast Software Encryption, 2011.
[7] I. Dinur and A. Shamir, “Side Channel Cube Attacks on Block Ciphers, IACR, 2009.
[8] C. D. Cannière and B. Prenee, “New Stream Cipher Designs, New Stream Cipher Designs, pp.84-97, 2008.
[9] I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials, EUROCRYPT ’09, 2009.
[10] I. Dinur and A. Shamir, “Breaking Grain-128 with Dynamic Cube Attacks, Fast Software Encryption, 2011.
[11] M. Duan and X. Lai, “Higher Order Differential Cryptanalysis Framework and its Applications, International Conference on Information Science and Technology, 2010.
[12] J. Guo, T. Peyrin, A. Poschmann, “The PHOTON Family of Lightweight Hash Functions, CRYPTO, 2011.
[13] J. Lathrop, “Cube Attacks on Cryptographic Hash Functions, Rochester Institute of Technology Department of Computer Science, 2009.
[14] X. Lai, “High Order Derivatives and Differential Cryptanalysis, 1992.
[15] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schlafer, “Rebound Distinguishers: Results on the Full Whirlpool Compression Function, ASIACRYPT ’09, 2009.
[16] A. Kaminsky, “Parallel Cube Tester Analysis of the CubeHash One-way Hash Function, 14th SIAM Conference on Parallel Processing for Scientific Computing, 2010.
[17] A. Kaminsky, “Cube test analysis of the statistical behavior of Cubehash and skein, Cryptology ePrint Archive, Report 2010/262, 2010.
[18] F. Mendel, C. Rechberger , M. Schlaffer, S. S. Thomsen, “Rebound Attacks on the Reduced Grøstl Hash Function, CT-RSA ’10, 2010.
[19] P. Mroczkowski and J. Szmidt, “The Cube Attack on Courtois Toy Cipher, Proceedings of WEWoRC, 2009.
[20] P. Mroczkowski and J. Szmidt, “The Cube Attack on Stream Cipher Trivium and Quadraticity Tests, CRYPTO, 2010.
[21] P. Mroczkowski and J. Szmidt, “The Cube Attack in the Algebraic Cryptanalysis of CTC2, Concepts and Implementations for Innovative Military Communications and Information Technologies, 2010.
[22] P. Mroczkowski and J. Szmidt, “The Cube Attack on Courtois Toy Cipher, Proceedings of WEWoRC, 2009.
[23] J. Nechvatal, “Public Key Cryptography, Contemporary Cryptography: The Science of Information Integrity, G. Simmons ed., IEEE, 1992.
[24] National Institute of Standards and Technology, “NIST, FIPS 180-2; Secure Hash Standard, which is available at http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf, August 2002.
[25] NIST Cryptographic Hash Algorithm Competition, which is available at http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
[26] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, and L. Bassham., “NIST SP800-22 Revision 1a: A statistical test suite for random and pseudorandom number generators for cryptographic applications, which is available at http://csrc.nist.gov /publications/PubsSPs.html, Apr. 2010.
[27] L. Rivest, “The MD6 Hash Function, CRYPTO ’08, 2008.
[28] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions, EUROCRYPT ’05, 2005.
[29] D. Watanabe, Y. Hatano, T. Yamada and T. Kaneko, “Higher Order Differential Attack on Step-Reduced Variants of Luffa v1, Fast Software Encryption, 2010.
[30] B. Zhu, W. Yu and T. Wang, “A Practical Platform for Cube-Attack-like Cryptanalyses, Cryptography/Network Security Course Project, 2010.
[31] B. Zhu, G. Gong, X. Lai and K. Chen, “Another View on Cube Attack, Cube Tester, AIDA and Higher Order Differential Cryptanalysis,2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top