跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王惠弘
研究生(外文):Huei-HongWang
論文名稱:15-28 GHz CMOS寬頻低雜訊放大器及60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器/IQ混頻器電路之研製
論文名稱(外文):Design of CMOS 15-28 GHz Wideband Low Noise Amplifier And 60-GHz CMOS LNA/IQ-Mixer for Noncontact Human Vital-Signs Sensing System
指導教授:莊惠如莊惠如引用關係
指導教授(外文):Huey-Ru Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:毫米波低雜訊放大器次諧波混頻器
外文關鍵詞:Millimeter-WaveLow Noise AmplifierSubharmonic Mixer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計研製CMOS 15-28 GHz寬頻低雜訊放大器以及應用於60-GHz毫米波非接觸式人體呼吸心跳訊號感測射頻晶片之低雜訊放大器/混頻器。15-28 GHz寬頻低雜訊放大器採用TSMC CMOS 0.18-μm製程,使用電阻性負回授電路架構實現寬頻匹配技術;而應用於60-GHz毫米波非接觸式人體呼吸心跳訊號感測射頻晶片(TSMC 90-nm CMOS)之低雜訊放大器使用衍生疊加(derivative superposition;DS)方法提線性度,而次諧波IQ混頻器則與採用leveled-LO 架構、主動/被動平衡器以及緩衝放大器 、威金森功率分波器以及 45。相移器實現。電路設計部份均使用Agilent ADS與Ansoft 3-D電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer及 bondwire到PCB板上方式進行並根據所預計量測的特性參數不同,相關的量測方法與設置亦有所調整。
This thesis presents the design of a 15-28 GHz wideband CMOS low-noise amplifier (LNA) using wideband matching techniques and 60-GHz CMOS LNA/IQ-Mixer circuits in the chip design of a millimeter-wave life detection system (MLDS) for noncontact human vital-signs sensing. The 15-28 GHz wideband CMOS LNA, fabricated with TSMC CMOS 0.18 μm standard process, utilizes a resistance feedback for bandwidth improvement. In the design of the 60-GHz CMOS LNA/IQ-mixer circuit, fabricated with TSMC CMOS 90-nm process, the LNA uses the derivative superposition (DS) linearization technique. The subharmoic IQ-mixer is composed of two subharmonic mixers , a Wilkinson power divider and a 45。phase shifter. The subharmonic IQ-mixer uses the leveled-LO structure, passive and active balun, and buffer amplifier. The measured performances of the designed MMW CMOS RFICs are all performed by using the on-wafer measurement setup.
第一章 緒論 1
1.1 研究動機與背景 1
1.2 論文架構 2
第二章 15-28 GHz CMOS寬頻低雜訊放大器 3
2.1 低雜訊放大器簡介 3
2.1.1多級電路系統雜訊指數 3
2.1.2CMOS放大器雜訊的來源 5
2.1.3放大器穩定度考量 5
2.1.4放大器頻寬的考量[5][11] 5
2.1.5放大器增益的考量 5
2.2 使用寬頻匹配技術之15-28 GHz 低雜訊放大器 6
2.2.1寬頻低雜訊放大器架構簡介 6
2.2.2寬頻低雜訊放大器設計流程與考量 6
2.2.3模擬與量測結果 11
2.2.4結果與討論 13
第三章 應用於60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器設計 17
3.1 60-GHz非接觸式人體呼吸心跳生理訊號感測系統簡介[33] 17
3.2 應用於非接觸式呼吸心跳訊號感測系統之靜態雜訊消除電路 19
3.2.1CMOS類循環器 20
3.2.2耦合器 20
3.2.360-GHz CMOS毫米波低雜訊放大器 21
3.2.4低插入損耗變化之可調式相移器 25
3.2.5低相位變化之可變增益放大器 26
3.2.6量測與模擬結果 26
3.2.7結果與討論 30
第四章 應用於60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器及IQ混頻器整合電路設計 31
4.1 60-GHz CMOS毫米低雜訊放大器 31
4.1.1低雜訊放大器設計流程 32
4.2 I/Q次諧波降頻混頻器[66][67] 33
4.2.1混頻器的設計考量 34
4.2.2次諧波降頻混波器 39
4.2. 360-GHz與30-GHz CMOS威金森功率分波器及45。相移器 46
4.2.4 IQ降頻混頻器電路圖 48
4.3 IQ降頻混頻器量測與模擬結果 49
4.4 結果與討論 51
第五章 結論 53
參考文獻 55
附錄A 24-GHz 使用提升線性度技術之低雜訊放大器 63
附錄B 放大器雜訊的來源 73
附錄C 寬頻放大器架構簡介 75
附錄D 混頻器架構簡介 83
附錄E 非接觸式生理訊號感測系統之偵測盲點(null point)討論[39][40] 89

[1]J. A. Howarth, et al., “60 GHz radios: enabling next-generation wireless applications, in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2]蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十九年。
[3]IEEE 802.15 Working Group for WPAN. [Online] http://www.ieee802. org/1 5
[4]D. M. Pozar, Microwave Engineering, 3rd ed. John Wiley and Sons, Inc. ,2005
[5]M. Chen and J. Lin, “A 0.1–20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS, IEEE Microw. Wirel Compon. Lett., vol. 19, no. 5, pp. 323–325, May 2009.
[6]G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Prentice Hall,1984.
[7]T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-Protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging, IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1817–1826, Aug. 2008.
[8]J.-H. C. Zhan and S. S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications, in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2006, pp. 721–730.
[9]B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, and J. Laskar, “A 0.5–6 GHz improved linearity, resistive feedback 90-nm CMOS LNA, in Proc. IEEE Asian Solid-State Circuits Conf.,no. 2006, pp. 263–266.
[10]B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “A 9.2mW, 4–8 GHz resistive feedback CMOS LNA with 24.4 dB gain, 2 dB noise figure, and 21.5 dBm output IP3, in Proc. IEEE Topical Meeting Silicon Monolith, Integr. Circuits RF Syst., Jan. 2008, pp. 34–37.
[11]鐘豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs的研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[12]Ultrawideband in 130 nm CMOS, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol, 20, no 3, pp. 400–409, March. 2012.
[13]A. Ismail, and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network, IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004.
[14]A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers, IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[15]X. Fan, E. Sanchez-Sinencio, and J. Silva-Martinez, A 3GHz-10GHz common gate ultrawideband low noise amplifier, in IEEE Midwest Symp. on Circuits and System, Aug. 2005, pp. 631-634.
[16]H. -J. Lee, D. S. Ha, and S.S. Choi, A systematic approach to CMOS low noise amplifier design for ultrawideband applications, in IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 3962-3965, May 2005.
[17]S. Pruvost, I. Telliez, F. Danneville, A. Chantre, P. Chevalier, G.Dambrine, and S. Lepilliet, “A compact low noise amplifier in SiGe:C BiCMOS technology for 40 GHz wireless communications, in IEEE Radio Frequency Integrated Circuits Symp (RFIC), 2005, pp. 565–568.
[18]H.-Y. Yang, Y.-S. Lin, and C.-C. Chen, “0.18 μm 21–27 GHz CMOS UWB LNA with 9.3±1.3 dB gain and 103.98.1 ps group delay, Electron. Lett., vol. 44, no. 17, pp. 1014–1016, Aug. 2008.
[19]V. Jain, S. Sundararaman, and P. Heydari, “A CMOS 22–29 GHz receiver front-end for UWB automotive pulse-radars, IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1903–1914, Aug. 2009.
[20]M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, “A millimeterwave(23–32 GHz) wideband BiCMOS low noise amplifier, IEEE J.Solid-State Circuits, vol. 45, no. 2, pp. 289–299, Feb. 2010.
[21]Hsien-Ku Chen, Yo-Sheng Lin and Shey-Shi Lu, “Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a π-Match Input Network, IEEE Trans. Microw. Theory Tech., vol. 58, no.8, pp. 2092-2104, Aug. 2010
[22]D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low noise amplifier, IEEE J. Solid-State Circuits, vol. 32, No. 5, pp. 745-759, May 1997.
[23]T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, 1998.
[24]B. Razavi, RF Microelectronics, Prentice-Hall, 1998, pp. 14–22.


[25]B. Kim, J. S. Ko, and K. Lee, “A new linearization technique for MOSFET RF amplifier using multiple gated transistors, IEEE Microw. Guided Wave Lett., vol. 10, no. 9, pp. 371–373, Sep. 2000.
[26]T. W. Kim, B. Kim and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors, IEEE J. Solid-State Circuit, vol. 39, no. 1, pp. 223-229, Jan. 2004.
[27]D. R. Webster, D. G. Haigh, J. B. Scott, and A. E. Parker, “Derivative superposition—a linearizationtechnique for ultra broadband systems, in IEE Wideband Circuits Modeling and Tech. Colloq., pp. 3/1–3/14, May 1996.
[28]S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier Using 0.18 μm CMOS technology, IEEE Microw. Wirel. Compon. Lett., vol. 15,no. 7, pp. 448–450, July 2005.
[29]Y.-L. Wei, S. S. H. Hsu, J.-D. Jin, “A low-power low-noise amplifier for K-band applications, IEEE Microw. Wirel. Compon. Lett., vol. 19, no.2, pp.116–118, Feb.2009.
[30]Yen-Hung Kuo, Jeng-Han Tsai, Wei-Hung Chou, Tian-Wei Huang, “A 24-GHz 3.8-dB NF Low-Noise Amplifier with Built-In Linearizer, in Proc. Asia-Pacific Microwave Conf., Dec. 2010, pp.1505-pp.1508.
[31]Chenglin Cui, et al., “Effects of the Nonlinearity of the Common-Gate Stage on the Linearity of CMOS Cascode Low Noise Amplifier IEEE Radio Frequency Integrated Circuits Symp(RFIC), 2011, pp. 1-4
[32]張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻系統篇, 全華科技,2008。
[33]H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring, IEEE Sensors Journal, vol. 12, no. 3, pp. 602-609, Mar 2012.
[34]K. M. Chen, et al., “An X-band microwave life-detection system, IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, July 1986.
[35]H. R. Chuang, Y. F. Chen, and K. M. Chen, “Automatic clutter-canceller for microwave life-detection system, IEEE Trans. Instrum. Meas., vol. 40, pp. 747–750, Aug. 1991.


[36]K. M. Chen, et al., “EM wave life-detection system for post-earthquake rescue operation, in Proc.1994 URSI Radio Science Meeting, Seattle, WA, 1994 pp. 19–24.
[37]K. M. Chen, Y. Huang, A. Norman, and Y. Yerramille, “EMwave life-detection system for post-earthquake rescue operation-field test and modifications, in Proc.1996 IEEE/APS-URSI Int. Symp., Baltimore, MD, 1996, pp. 35–37.
[38]K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier, IEEE Trans. Biomed. Eng., vol. 27, no. 1, pp. 105–114, Jan. 2000.
[39]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring, IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[40]Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in ka-band, IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023–2032, May 2006.
[41]C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power ka-band heartbeat detector measuring from four sides of a human body, IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
[42]C. Li, Y. Xiao, and J. Lin, “A 5 GHz double-sideband radar sensor chip in 0.18-μm CMOS for non-contact vital sign detection, IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 7, pp. 494–496, Jul. 2008.
[43]C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection, in IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, Jun. 2008, pp. 567–570.
[44]C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection, IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.

[45]C. Li, X. Yu, D. Li, L. Ran, and J. Lin, “Software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection, in Proc. IEEE Radio Frequency Integrated Circuits Symp(RFIC), 2009, pp. 97–100.
[46]C. Li, Y. Xiao, C. M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection, IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1410–1419, May 2010.
[47]Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a doppler radar sensor, in IEEE Radio Wirel. Symp., New Orleans, LA, Jan. 2010, pp. 196–199.
[48]B. K. Park, O. Boric-Lubecke, and V. M. Lubecke “Arctangent demodulation with DC offset compensation in quadrature doppler radar receiver systems, IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007.
[49]Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, “Detection of multiple heartbeats using Doppler radar, in Proc. IEEE ICASSP 2006, May 2006, vol. 2, pp. 1160–1163.
[50]O. Boric-Lubecke, V. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung, “Doppler radar sensing of multiple subjects in single and multiple antenna systems, in Proc. 7th Int. Conf. on Telecommunication in Modern Satellite, Cable and Broadcasting Services, Sept. 2005, vol. 1, pp. 7–11.
[51]T. O. Dickson et al., “The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks, IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1830–1845, Aug. 2006.
[52]B. Razavi, RF Microelectronics. Upper Saddle River, NJ: Prentice-Hall, 1998, pp. 14–22.
[53]B. Kim, J. S. Ko, and K. Lee, “A new linearization technique for MOSFET RF amplifier using multiple gated transistors, IEEE Microw. Guided Wave Lett., vol. 10, no. 9, pp. 371–373, Sep. 2000.
[54]T. W. Kim, B. Kim and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors, IEEE J. Solid-State Circuit, vol. 39, no. 1, pp. 223-229, Jan. 2004.
[55]D. R. Webster, D. G. Haigh, J. B. Scott, and A. E. Parker, “Derivative superposition—a linearization technique for ultra broadband systems, in IEE Wideband Circuits Modeling and Tech. Colloq., pp. 311–314, May 1996.
[56]T. Mitomo, et al., “A 60-GHz CMOS receiver front-end with frequency synthesizer, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1030–1037, Apr. 2008.
[57]E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio, in IEEE Radio Frequency Integrated Circuits Symp(RFIC), 2008, pp. 61–64.
[58]C. C. Chen, Y. S. Lin, J. F. Chang, and S. S. Lu, “A 4.9-dB NF 53.5-62-GHz micro-machined CMOS wideband LNA with small group-delay-variation, IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 489–492.
[59]C. C Huang, H. C. Kuo, T. H. Huang, and H. R. Chuang “Low-power, high-gain V-band CMOS low noise amplifier for microwave radiometer applications, IEEE Microw. and Wirel. Compon. Lett. vol. 21, no. 2, pp. 104-106, Feb. 2011.
[60]羅珮華,毫米波CMOS 低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國101年。
[61]呂知穎,毫米波CMOS 低變化插入損耗相移器與非對稱型射頻收發開關之研製,國立成功大學電腦與通信工程研究所碩士論文,民國101年
[62]C. H. Doan et al., “Millimeter-wave CMOS design, IEEE J. Solid-State Circuit, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[63]T. Yao et al., “Algorithmic design of CMOS LNAs and Pas for 60-GHz radio, IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[64]S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, P.Westergaard, “A Comparison of Si CMOS, SiGe BiCMOS, and InP HBT Technologies for High-Speed and Millimeter-Wave ICs ,Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2004.
[65]H. O. Vickes, M. Ferndahl, A. Masud, H. Zirath, “The Influence of The Gate Leakage Current and The Gate Resistance on The Noise and Gain Performances of 90-nm CMOS for Micro- and Millimeter-Wave Frequencies , IEEE MTT-S Int. Microw. Symp. Dig., 2004., pp. 971–974.
[66]郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
[67]歐雅文,毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國100年。
[68]B. Razavi, “RF Microelectronic, NJ, USA: Prentice-Hall PTR, 1998.
[69]C. Toumazou, G. Moschytz, B. Gilbert, and G. Kathiresan, “Trade-Offs in Analog Circuit Design, Kluwer Academic Publishers, 2002.
[70]J.-X. Liu. C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, “A 60-GHz Millimeter-wave CMOS Marchand Balun, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2007, pp.445-448.
[71]郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國100年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊