跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂知穎
研究生(外文):Jhin-YingLyu
論文名稱:毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製
論文名稱(外文):Research on Millimeter-Wave CMOS Low Insertion-Loss-Variation Phase Shifters and Asymmetrical T/R Switch
指導教授:莊惠如莊惠如引用關係
指導教授(外文):Huey-Ru Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:毫米波相移器收發開關
外文關鍵詞:Millimeter-WavePhase ShifterT/R Switch
相關次數:
  • 被引用被引用:7
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製毫米波CMOS低變化插入損耗之相移器與射頻收發開關。K-band與V-band相移器分別採用TSMC CMOS 0.18-μm和90-nm製程,應用於60-GHz非接觸式人體呼吸心跳訊號感測系統(MLDS)前端電路整合晶片之低變化插入損耗相移器使用反射式相移器架構,可達到相位連續調180°之功能,並藉由調整反射式負載以達到低插入損耗變化之特性;而K-band與V-band全相位低變化插入損耗之相移器,主要架構是在180°反射式相移器輸出串接一個可切換180°相位差之切換式相移器,藉由切換180°切換式相移器使整體相位達到360°連續可調控之特性;V-band全相位低變化插入損耗相移器並進一步與可變增益低雜訊放大器進行整合。24-GHz CMOS射頻收發開關採用TSMC CMOS 0.18-μm製程,主要使用非對稱型架構加上並聯諧振電感來實現。電路模擬部分使用Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS,晶片量測部分則採fully on-wafer方式進行量測。
This thesis presents the design of millimeter-wave (MMW) CMOS phase shifters and T/R switch. The K- and V-band phase shifters are fabricated using standard TSMC 0.18-μm and 90-nm CMOS technologies, repectively. To achieve continue 180° phase control range for 60-GHz CMOS MMW life-detection system (MLDS) for noncontact human vital-signs sensing, a reflection-type phase shifter is used and low insertion-loss variation is realized by adjusting reflective loads. In the design of K- and V-band full-360° phase shifters, a 180° switching-type phase shifter is added at the output of a 180° reflection-type phase shifter. Furthermore, the V-band full-360° phase shifter is integrated with variable-gain low noise amplifier (VG-LNA) for the cultter cancellation circuit to be applied in the 60-GHz CMOS MLDS. The 24-GHz CMOS asymmetrical T/R switch is realized using shunt inductor resonance technique.The Agilent ADS and Ansoft three-dimensional (3D) EM simulator HFSS are used for design simulation. The measured performances of the designed MMW CMOS RFICs are all performed by using the on-wafer measurement setup.
第一章 緒論 1
1.1 研究動機與背景 1
1.2 論文架構 1
第二章 K-band全相位具低變化插入損耗之相移器 3
2.1 相移器簡介 3
2.2 常見可調式相移器架構 4
2.2.1 開關式相移器(switching type phase shifter, STPS) 5
2.2.2 向量調變式相移器(vector modulation phase shifter) 5
2.2.3 分佈式相移器(distributed phase shifter) 7
2.2.4 反射式相移器(reflection-type phase shifter, RTPS) 7
2.3 K-band全相位具低變化插入損耗之相移器 11
2.3.1 電路架構簡介 11
2.3.2 完整電路設計流程與考量 16
2.3.3 模擬與量測結果 17
2.3.4 結果與討論 20
第三章 V-band具低變化插入損耗之相移器 23
3.1 應用於60-GHz MLDS前端電路整合晶片之低變化插入損耗相移器 23
3.1.1 非接觸式人體呼吸心跳生理訊號感測系統簡介 23
3.1.2 相移器電路架構簡介 24
3.1.3 相移器電路設計流程與考量 27
3.1.4 模擬與量測結果 27
3.1.5 結果與討論 32
3.2 V-band全相位具低變化插入損耗之相移器 34
3.2.1 電路架構簡介 34
3.2.2 完整電路設計流程與考量 36
3.2.3 模擬與量測結果 36
3.2.4 結果與討論 39
3.3 V-band全相位具低變化插入損耗相移器與可變增益低雜訊放大器之整合晶片 41
3.3.1 電路架構簡介 41
3.3.2 整合電路之設計與考量 42
3.3.3 整合電路之模擬與量測結果 43
3.3.4 結果與討論 47
第四章 24-GHz CMOS非對稱型射頻收發開關 49
4.1 收發開關簡介 49
4.1.1 操作原理及重要參數介紹 49
4.1.2 常見收發開關架構 51
4.2 改善收發開關特性之技術 53
4.2.1 基極浮接(body-floating)技術 53
4.2.2 疊接電晶體式(stacked transistors)收發開關 56
4.2.3 並聯電感諧振式(shunt inductor resonance)收發開關 57
4.2.4 洩漏訊號消除(leakage cancellation)技術之收發開關 58
4.3 24-GHz CMOS非對稱型射頻收發開關 59
4.3.1 電路架構簡介 59
4.3.2 電晶體尺寸選擇 60
4.3.3 並聯諧振電感選擇 61
4.3.4 完整電路設計流程與考量 61
4.3.5 模擬與量測結果 62
4.3.6 結果與討論 66
第五章 結論 69
參考文獻 71
附錄A 反射式負載 75
附錄B 90°相移電路推導 76
附錄C 電晶體開關模型 80

[1]J. A. Howarth, A. P. Lauterbach, M. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications, in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2]RF atmospheric absorption / ducting [Online].Available : http://www.tscm.com/rf_absor.pdf
[3]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4]曾暐哲,應用於微波頻段之低雜訊放大器及相移器之研究,國立台灣大學電信工程研究所碩士論文,民國九十七年。
[5]P. W. Hannan, “The element-gain paradox for a phased-array antenna, IEEE Trans. Antennas Propag., vol. 12, no. 4, pp. 423-433, Jul. 1964.
[6] A. Natarajan, “Millimeter-wave phased arrays in silicon, Ph.D. dissertation, California Institute of Technology, Pasadena, California, 2007.
[7]X. Tang, and K. Mouthaan, “Design considerations for octave-band phase shifters using discrete components, IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3459-3466, Dec. 2010.
[8]M. Kim, J. G. Yang, and K. Yang, “Switched transmission-line type Q-band 4-bit MMIC phase shifter using InGaAs pin diodes, Electron. Lett., vol. 46, no. 3, pp. 225-226, Feb. 2010.
[9]J.-W. Lee, and S.-Y. Kim, “60 GHz switched-line-type phase shifter using body-floating switches in 0.13 mm CMOS technology, Electron. Lett., vol. 48, no. 7, pp. 376-378, Mar. 2012.
[10]D.-W. Kang, H.-D. Lee, C.-H. Kim, and Songcheol Hong, “Ku-Band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology, IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 294-301, Jan. 2006.
[11]F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, I. Santamaria, C. Scheytt, R. and Kraemer, “Integrated adjustable phase shifters, IEEE Microw. Mag., vol. 11, no. 6, pp. 97-108, Oct. 2010.
[12]Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, and A. H. M. van Roermund, “A 60 GHz phase shifter integrated with LNA and PA in 65 nm CMOS for phased array systems, IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1697-1709, Sep. 2010.
[13]T.-C. Yan, W.-Z. Lin, and C.-N. Kuo, “A 3.5 GHz phase shifter of high input power range with digitally controlled VGA, in IEEE Radio Freq. Integr. Technol. Symp., Nov. 2011, pp 29-32.
[14]A. S. Nagra, and R. A. York, “Distributed analog phase shifters with low insertion loss, IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1705-1711, Sep. 1999.
[15]F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135-1140, Apr. 2003.
[16]J.-C. Wu, C.-C. Chang, S.-F. Chang, and T.-Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation,“in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2008, pp 365-368.
[17]林宏儒,24-及77-GHz毫米波CMOS帶通濾波器、相移器及類循環器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十九年。
[18]C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss, IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1862-1868, Sep. 2007.
[19]F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining, IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, Apr. 2002.
[20]H. Zarei, C. T. Charles, and D. J. Allstot, “Reflective-type phase shifters for multiple antenna transceivers, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[21]S.-B. Cohn, “Characteristic impedances of broadside-coupled strip transmission lines, IEEE Trans. Microw. Theory Tech., vol. 8, no. 6 , pp. 633-637, Nov. 1960.
[22]蕭文俊,應用於電磁微振動感測系統之相移器與混頻器設計,國立中正大學電機工程研究所碩士論文,民國九十六年。
[23]C.-H. Wu, W.-T. Li, J.-H. Tsai, T.-W. Huang, “Design of a K-band low insertion loss variation phase shifter using 0.18-μm CMOS process, in IEEE Asia-Pacific Microw. Conf., Dec. 2010, pp. 1735-1738.
[24]A. B. Nguyen, and J.-W. Lee, “A K-band CMOS phase shifter MMIC based on a tunable composite metamaterial, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 311-313, Jun. 2011.
[25]H.-R. Chuang, H.-C. Kuo, F.-L. Lin, T.-H. Huang, C.-S. Kuo, and Y.-W. Ou, “60-GHz millimeter-wave life detection system (MLDS) for noncontact human vital-signal monitoring, IEEE Sensors J., vol. 12, no. 3, pp. 602-609, Mar. 2012.
[26]B. Biglarbegian, M. R. Nezhad-Ahmadi, M. R. , Fakharzadeh M. , Safavi-Naeini S., “Millimeter-wave reflective-type phase shifter in CMOS technology, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560-562, Sep. 2009.
[27]M. Tabesh, A. Arbabian, A. Niknejad, “60 GHz low-loss compact phase shifters using a transformer-based hybrid in 65 nm CMOS, in IEEE Custom Integr. Circuits Conf., Sep. 2011, pp.1-4.
[28]羅珮華,毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電機工程研究所碩士論文,民國一百零一年。
[29]A. Natarajan, B. Floyd, and A. Hajimiri, “A bidirectional RF-combining 60 GHz phased-array front-end, in IEEE Int. Solid-State Circuits Conf., Feb. 2007, pp. 202–203.
[30]羅盛郅,應用於超寬頻接收機之寬頻CMOS平衡器及分散式切換開關 RFIC與3-5-GHz射頻接收模組之研製,國立成功大學電機工程研究所碩士論文,民國九十五年。
[31]郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器之研製,國立成功大學電機工程研究所碩士論文,民國一百零一年。
[32]Y. Ayasli, R. L. Mozzi, J. L. Vorhaus, L. D. Reynolds, and R. A. Pucel, “A monolithic GaAs 1-13-GHz traveling-wave amplifier, IEEE Trans. Microw. Theory Tech., vol. 30, no. 7, pp. 976–981, Jul. 1982.
[33]S.-F. Chao, H. Wang, C.-Y. Su, and John G. J. Chern, “A 50 to 94-GHz CMOS SPDT switch using traveling-wave concept, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 130–132, Feb. 2007.
[34]X.-J. Li, and Y.-P. Zhang, “Flipping the CMOS switch, IEEE Microw. Mag., vol. 11, no. 1, pp. 86–96, Feb. 2010.
[35]M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance, IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 31–39, Jan. 2006.
[36]F.-J. Huang, and K. O, “A 0.5-μm CMOS T/R switch for 900-MHz wireless applications, IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.
[37]T. Ohnakado, S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs), IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 577–584, Apr. 2004.
[38]B.-W. Min and G. M. Rebeiz, “Ka-band low-loss and high-isolation 0.13 μm CMOS SPST/SPDT switches using high substrate resistance, in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2007, pp. 569–572.
[39]C.-Y. Ou, H.-R. Lin, H.-R. Chuang and T.-H. Huang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process, in Eur. Microw. Conf., Sep. 2009, pp. 250–253.
[40]S.-C. Chang, S.-F. Chang, T.-Y. Chih, and J.-A. Tao, “An internally-matched high-isolation CMOS SPDT switch using leakage cancellation technique, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 525–527, Jul. 2007.
[41]Q. Li, Y. P. Zhang, K. S. Yeo, and W. M. Lim, “16.6- and 28-GHz fully integrated CMOS RF switches with improved body floating, IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 339–345, Feb.2008.
[42]P. Park, D. H. Shin, and C. P. Yue, “High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias, IEEE Trans. Microw. Theory Tech., vol. 57, No. 4, pp. 948–956, Apr. 2009.
[43]B. W. Min, and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends, IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
[44]W. K. W. Ali’ and S. H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates, in IEEE Antennas Propag. Integr. Symp., Jun. 1998., pp. 676-679.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊