跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.97) 您好!臺灣時間:2022/09/28 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊詠翔
研究生(外文):Yung-HsiagnChuang
論文名稱:60-及77-GHz毫米波GIPD射頻晶片天線/濾波天線及CMOS人造磁導體嵌入式天線之研製
論文名稱(外文):Research on 60- and 77-GHz GIPD On-Chip Antenna / Filtering-Antennas and CMOS Artificial Magnetic Conductor (AMC) Antennas
指導教授:莊惠如莊惠如引用關係
指導教授(外文):Huey-Ru Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:毫米波晶片天線濾波天線人造磁導體balun帶通濾波器整合式被動元件60 GHz77 GHz
外文關鍵詞:millimeter-waveon-chip antennafiltering antennaartificial magnetic conductorAMCbalun-filterIPD60 GHz77 GHz
相關次數:
  • 被引用被引用:3
  • 點閱點閱:808
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計研製毫米波GIPD與CMOS射頻晶片嵌入式天線,包含77-GHz GIPD Yagi天線與非平衡轉平衡(balun)帶通濾波器、77-GHz CMOS人造磁導體Yagi天線與balun帶通濾波器、整合77-GHz GIPD線性漸進式開槽天線與balun帶通濾波器、以及60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線等毫米波整合射頻晶片。77-GHz GIPD Yagi天線與balun帶通濾波器整合晶片採用tMt GIPD製程,結合毫米波接收機前端電路三種被動元件(天線、平衡器、帶通濾波器);77-GHz CMOS人造磁導體Yagi天線與balun帶通濾波器整合晶片採用TSMC CMOS 90-nm製程,利用人造磁導體結構改善CMOS製程天線輻射效率; 77-GHz GIPD線性漸進式開槽天線與非平衡轉平衡輸出帶通濾波器之整合晶片採用tMt GIPD製程,天線輻射體以平面式線性漸進式開槽架構實現;60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線採用tMt GIPD製程,設計60-GHz具有帶通濾波響應之射頻晶片嵌入式天線,包含非平衡式饋入偶極子濾波天線及Yagi濾波天線。設計之晶片訊號饋入系統皆以共面波導方式設計,天線架構皆以平面方式實現,使用ANSYS 3D全波電磁模擬軟體HFSS進行模擬,晶片量測採用on-wafer方式進行。
This thesis presents the design of millimeter-wave (MMW) GIPD and CMOS on-chip antennas. The GIPD and CMOS MMW on-chip antennas are fabricated with tMt GIPD process and TSMC 90-nm CMOS standard process, respectively. The three-dimensional (3D) EM simulator HFSS is used for design simulation. The designed MMW on-chip antennas including: (1) a 77-GHz GIPD integrated on-chip Yagi antenna with balun-bandpass filter, which combined three passive components (antenna, balun, bandpass filter) of the MMW receiver front-end; (2) a 77-GHz CMOS integrated on-chip AMC-Yagi antenna with balun-bandpass filter, in which an artificial magnetic conductor (AMC) between antenna and Si-substrate is placed to improve radiation efficiency; (3) a 77-GHz GIPD integrated on-chip linear tapered slot antenna (LTSA) with unbalanced-to-balanced bandpass filter, in which two sides of the LTSA are corrugated with rectangular gratings to increase the antenna power gain and F/B ratio; (4) a 60-GHz unbalanced-fed bandpass-filtering dipole/Yagi antennas with bandpass response. The measured performances of the designed MMW on-chip antennas are all performed by using the on-wafer measurement setup.
第一章 緒論 1
1.1 研究動機與背景[1][2] 1
1.2 論文架構 2
第二章 77-GHz GIPD Yagi天線與Balun帶通濾波器之毫米波整合晶片 3
2.1 玻璃基板整合式被動元件(GIPD)製程簡介 3
2.2 77-GHz GIPD Yagi天線與Balun帶通濾波器整合晶片 4
2.2.1 架構簡介 4
2.2.2 設計流程與考量 6
2.2.3 模擬與量測結果 7
2.3 結果與討論 17
第三章 77-GHz CMOS人造磁導體Yagi天線與Balun帶通濾波器之毫米波整合晶片 21
3.1 人造磁導體簡介 21
3.2 77-GHz CMOS AMC-Yagi天線與Balun帶通濾波器整合晶片 25
3.2.1 架構簡介 25
3.2.2 設計流程與考量 27
3.2.3 模擬與量測結果 29
3.3 結果與討論 39
第四章 整合77-GHz GIPD線性漸進式開槽天線與非平衡轉平衡輸出帶通濾波器之毫米波晶片 45
4.1 漸進式開槽天線基本原理[1] 45
4.2 整合77-GHzGIPD線性漸進式開槽天線與非平衡轉平衡輸出帶通濾波器之毫米波晶片 47
4.2.1 架構簡介 47
4.2.2 設計流程與考量 49
4.2.3 模擬與量測結果 50
4.3 結果與討論 62
第五章 60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線 63
5.1 濾波天線設計與分析[32][33] 63
5.1.1 λ/4共振器 63
5.1.2 λ/4輻射體與帶通濾波天線 65
5.2 60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線 66
5.2.1 架構簡介 66
5.2.2 設計流程與考量 67
5.2.3 模擬與量測結果 68
5.3 結果與討論 74
第六章 結論 77
參考文獻 79
附錄A 毫米波(Millimeter-Wave)應用與簡介[1] 83
A.1 60-GHz短距離無線通訊系統(WPAN)簡介 84
A.2 77-GHz汽車防撞雷達系統簡介 86
附錄B 偶極子天線(Dipole)與Yagi-Uda天線簡介[1][2] 89
B.1 偶極子天線簡介[3][4] 89
B.2 Yagi-Uda天線簡介[3][4] 92
附錄C Balun帶通濾波器簡介[10] 95
附錄D 射頻晶片嵌入式天線量測方法[1][2] 99
D.1 VSWR與射頻晶片嵌入式天線量測功率增益方法 99
D.1.1 考慮量測探針機台之金屬平台效應(metallic-plate effect) 101
D.2 射頻晶片嵌入式天線輻射場型量測方法 104

[1]蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國九十九年七月。
[2]岳翰林,毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年一月。
[3]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
[4]C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. New York: Wiley, 2005.
[5]Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
[6]D. M. Pozar, Microwave and RF Design of Wireless Systems, 1st ed. John Wiley and Sons Ltd, 2001.
[7]S. Saunders and A. Aragón-Zavala, Antennas and propagation for wireless communication systems, 2nd ed. John Wiley and Sons Ltd, 2007.
[8]S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-um CMOS technology IEEE Electron Device Lett., vol. 29, no. 6, pp. 625-627, Jun. 2008.
[9]H.-R. Chuang, L.-K. Yeh, P.-C. Kuo, K.-H. Tsai, and H.-L. Yue, A 60-GHz millimeter-wave CMOS integrated on-chip antenna and bandpass filter, IEEE Trans. Electron Device, vol. 58, no. 7, pp. 1837-1845, Jul. 2011.
[10]C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs, IEEE Electron Device Lett., vol. 31, no. 11, pp. 1205-1207, Nov. 2010.
[11]Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, and H.-R. Chuang, A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology, in Asia-Pacific Microw. Conf., Dec. 2011, pp. 449-452.
[12]F.-J. Huang, C.-M. Lee, C.-Y. Kuo, and C.-H. Luo, MMW antenna in IPD process for 60-GHz WPAN applications, IEEE Antennas and Wireless Propag. Lett., vol. 10, pp. 565-568, 2011.
[13]C. Calvez, C. Person, J. Coupez, F. Gallee, R. Pilard, F. Gianesello, D. Golria, D. Belot, and H. Ezzeddine, Miniaturized hybrid antenna combining Si and IPD technologies for 60 GHz WLAN applications, in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2011, pp. 1357-1359.
[14]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex´opolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
[15]R. J. Langley and A. J. Drinkwater, Improved empirical model for the Jerusalem cross, IEE Proc. H Microw., Opt. and Antennas, vol. 129, no. 1, pp. 1-6, 1982.
[16]M. K. T. Al-Nuaimi and W. G. Whittow, Low profile dipole antenna backed by isotropic artificial magnetic conductor reflector, in Eur. Conf. on Antennas Propag., Apr. 2010, pp. 1-5.
[17]H. Mosallaei and K. Sarabandi, Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate, IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.
[18]C. R. Simovski, P. d. Maagt, and I. V. Melchakova, High-impedance surfaces having stable resonance with respect to polarization and incidence angle, IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 908-914, Mar. 2005.
[19]H. Chu, Y.-X. Guo, and X.-Q. Shi, Wideband 60 GHz on-chip antenna with an artificial magnetic conductor, in IEEE Int. Symp. on Radio-Freq. Integr. Tech., Nov. 2009, pp. 307-310.
[20]K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS, IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720-1731, Sep. 2010.
[21]X.-Y. Bao, Y.-X. Guo, and Y.-Z. Xiong, 60-GHz AMC-based circularly polarized on-chip antenna using standard 0.18-μm CMOS technology, IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2234-2241, May 2012.
[22]F. Yang and Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691-2703, Oct. 2003.
[23]M. K. T. Al-Nuaimi and W. G. Whittow, Ultra thin dipole antenna backed by new planar artificial magnetic conductor, in Loughborough Antennas Propag. Conf., Nov. 2009, pp. 97-100.
[24]A. Foroozesh and L. Shafai, Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas, IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 4-20, Jan. 2011.
[25]S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, A mm-wave tapered slot antenna with improved radiation pattern, in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1998, pp. 533-536.
[26]P. J. Gibson, The Vivaldi aerial, in Proc. 9th Eur. Microw. Conf., Mar. 1979, pp. 101-105.
[27]R. Janaswamy and D. H. Schaubert, Analysis of the tapered slot antennas, IEEE Trans. Antennas Propag., vol. 35, no. 9, pp. 1058-1065, Sep. 1987.
[28]F. J. Zucker, Surface-Wave Antennas, in Antenna Engineering Handbook, 4th ed. McGraw-Hill, 2007.
[29]K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, The tapered slot antenna - a new integrated element for millimeter-wave applications, IEEE Trans. Microw. Theory Tech., vol. 37, no. 2, pp. 365-374, Feb. 1989.
[30]K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, Endfire tapered slot antennas on dielectric substrates, IEEE Trans. Antennas Propag., vol. 33, no. 12, pp. 1392-1400, Dec. 1985.
[31]H.-Y. Xu, H. Zhang, J. Wang, and L.-X. Ma, A new tapered slot antenna with symmetrical and stable radiation pattern, Progre. Electromagnetics Research Lett., vol. 5, pp. 35-43, 2008.
[32]C.-T. Chuang and S.-J. Chung, New printed filtering antenna with selectivity enhancement, in Proc. 39th Eur. Microw. Conf., Sep. 2009, pp. 747-750.
[33]Z. Ma and Y. Kobayashi, Design and realization of bandpass filters using composite resonators to obtain transmission zeros, in Proc. 35th Eur. Microw. Conf., Oct. 2005, pp. 1255-1258.
[34]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbot, and N. Weste, 60 GHz radios: enabling next-generation wireless applications, in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1-6.
[35]C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, Performance of a planar filter using a 0° feed structure, IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362-2367, Oct. 2002.
[36]R. N. Simons and R. Q. Lee, On-wafer characterization of millimeter-wave antennas for wireless applications, IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
[37]RF atmospheric absorption / ducting [Online].
Available: http://www.tscm.com/rf_absor.pdf
[38]IEEE 802.15 Working Group for WPAN. [Online].
Available: http://www.ieee802.org/15

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 60-及77-GHz CMOS人造磁導體嵌入式天線及相位陣列天線毫米波晶片
2. 寬頻帶毫米波晶片天線,新型抑制旁波瓣與增加掃頻範圍之微帶洩漏波天線及高隔離度多輸入多輸出天線
3. 雙頻帶毫米波晶片單極天線,新型前端輻射天線及高前後輻射比之準八木天線之設計
4. 24及60-GHz毫米波CMOS晶片嵌入式天線及平面印刷式手機天線的設計研究
5. 毫米波CMOS鎖相迴路電路及24-GHz注入鎖定振盪器之人體呼吸心跳生理訊號感測射頻晶片之研製
6. 94-及160-GHz毫米波CMOS / IPD射頻晶片天線及94-GHz整合IPD晶片天線之CMOS可升降頻混頻器
7. 毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製
8. 毫米波 LTCC/GIPD/CMOS 相位陣列天線之設計
9. 陣列天線波束寬度及傳播效能優化與平面線性掃描之毫米波天線量測場開發
10. 45度線性極化高增益毫米波微帶天線陣列
11. 15-28 GHz CMOS寬頻低雜訊放大器及60-GHz非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器/IQ混頻器電路之研製
12. 毫米波CMOS射頻晶片嵌入式天線之研製與量測方法的探討
13. 60-GHz高增益寬頻天線陣列整合電磁帶隙反射板於手持式裝置與右手/左手傳輸線於天線陣列之應用
14. 寬頻無線接取網路上針對可適性網路編碼機制之研究與分析
15. 毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製