跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏棋
研究生(外文):Po-ChiWang
論文名稱:毫米波CMOS鎖相迴路電路及24-GHz注入鎖定振盪器之人體呼吸心跳生理訊號感測射頻晶片之研製
論文名稱(外文):Research on Millimeter-Wave CMOS Phase-Locked Loop Circuits and 24-GHz CMOS Cardiorespiratory Doppler Sensor Using Injection-Locked Oscillator
指導教授:莊惠如莊惠如引用關係
指導教授(外文):Huey-Ru Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:毫米波壓控振盪器鎖相迴路注入鎖定振盪器
外文關鍵詞:Millimeter-WaveVCOPhase-Locked LoopInjection-Locked Oscillator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製V-band CMOS雙推式考畢茲壓控振盪器、整合60-GHz CMOS次諧波射頻接收機之開迴路鎖相迴路、及整合於24-GHz人體呼吸心跳生理訊號感測射頻晶片之注入鎖定振盪器。V-band CMOS 雙推式壓控振盪器採用TSMC CMOS 0.18-μm製程,主要以差動轉導提升考畢茲架構搭配雙推式技術來克服製程頻率限制。開迴路鎖相迴路採用TSMC CMOS 90-nm製程,實現包含相頻偵測器、電荷幫浦及壓控振盪器並與60-GHz次諧波射頻接收機進行整合。24-GHz人體呼吸心跳生理訊號感測射頻晶片採用TSMC CMOS 0.18-μm製程,以注入鎖定振盪器整合類循環器進行實現。注入鎖定振盪器部份前端整合多層變壓器式馬遜平衡器,以完成差動方式注入。電路設計部分以Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部分則是採用on-wafer或打鎊線至PCB板上進行量測,根據預計量測特性之不同,相關量測方式亦有所調整。
This thesis presents the design of millimeter-wave (MMW) CMOS phase-locked loop circuits, including a V-band push-push VCO and an open-looped PLL, and 24-GHz injection-locked oscillators for CMOS cardiorespiratory Doppler sensor. The designed RFICs are implemented by standard TSMC 0.18-μm or 90-nm CMOS process. The Agilent ADS and Ansoft three-dimensional (3D) EM simulator HFSS are used for design simulation. The V-band push-push VCO fabricated by 0.18-μm CMOS uses the gm-boosted differential Colpitts topology and push-push technique. The open-looped PLL include a phase frequency detector, a charge pump, and a voltage-controled oscillator, is integrated with a 60-GHz sub-harmonic receiver RF front-end (with a integrated on-chip antenna and balun filter). The 24-GHz injection-locked oscillators are integrated with a quasi-circulator to realize a 24-GHz CMOS cardiorespiratory Doppler sensor. The measured performance of the designed RFICs are achieved by the using the on-wafer or on-board measurement.
第一章 緒論 1

1.1 研究動機與背景 1
1.2 論文架構 1

第二章 V-band CMOS雙推式考畢茲壓控振盪器 3

2.1 常見之V-band壓控振盪器電路架構 3
2.1.1 使用源極退化電容(capacitive degeneration)之壓控振盪器 3
2.1.2 使用浮接金屬長條(floating metal strip)之λ/4駐波振盪器 4
2.1.3 次諧波注入鎖定振盪器(subharmonically injection locked oscillator) 7
2.1.4 雙推式壓控振盪器(push-push VCO) 8
2.2 V-band CMOS雙推式考畢茲壓控振盪器 10
2.2.1 電路架構與設計簡介 10
2.2.2 完整電路設計流程與考量 14
2.3 模擬與量測結果 15
2.3.1 V-band CMOS雙推式考畢茲壓控振盪器模擬結果 15
2.3.2 V-band CMOS雙推式考畢茲壓控振盪器量測結果 16
2.4 結果與討論 22

第三章 整合CMOS開迴路鎖相迴路於60-GHz次諧波射頻接收機 25

3.1 60-GHz次諧波射頻接收機架構簡介 25
3.2 開迴路鎖相迴路及子電路架構簡介 26
3.2.1 相位頻率偵測器及其不理想效應 26
3.2.2 電荷幫浦及其不理想效應 28
3.2.3 壓控振盪器 30
3.3 開鎖相迴路子電路設計 31
3.3.1 相位頻率偵測器的設計與考量 31
3.3.2 電荷幫浦的設計與考量 33
3.3.3 壓控振盪器的設計與考量 35
3.3.4 完整電路設計與考量 37
3.4 模擬與量測結果 39
3.5 結果與討論 43

第四章 應用於24-GHz CMOS人體呼吸心跳訊號感測射頻晶片之注入鎖定振盪器設計及整合量測 47

4.1 非接觸式生理感測系統簡介 47
4.2 振盪器注入鎖定原理介紹 48
4.3 使用注入鎖定振盪器人體呼吸心跳訊號感測系統原理分析 53
4.4 24-GHz CMOS人體呼吸心跳訊號感測射頻晶片 57
4.4.1 完整電路設計考量 58
4.4.2 完整電路設計流程與考量 62
4.4.3 模擬與量測結果 63
4.5 結果與討論 69

第五章 結論 71

參考文獻 73

[1]J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications, in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2]RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
[3]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4]A. M. Niknejad, H. Hashemi, mm-Wave Silicon Technology: 60GHz and Beyond, Springer Science, New York, 2007.
[5]W. F. Andress and D. Ham, “Standing wave oscillators utilizing wave-adaptive tapered transmission lines, IEEE J. Solid-State Circuits, vol.40, no. 3, pp. 638–651, Mar. 2005.
[6]J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq, “VCO design for 60 GHz applications using differential shielded inductors in 0.13 μm CMOS, in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2008, pp. 135–138.
[7]S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range, in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[8]A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications, IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635–2649, Nov. 2011.
[9]K. Okada, K. Kondou, M. Miyahara, M. Shinagawa, H. Asada, R. Minami, T. Yamaguchi, A. Musa, Y. Tsukui, Y. Asakura, S. Tamonoki, H. Yamagishi, Y. Hino, T. Sato, H. Sakaguchi, N. Shimasaki, T. Ito, Y. Takeuchi, N. Li, Q. Bu, R. Murakami, K. Bunsen, K. Matsushita, M. Noda, and A. Matsuzawa, “A full 4-channel 6.3Gb/s 60GHz direct-conversion transceiver with low-power analog and digital baseband circuitry, in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2012, pp. 218–220.
[10]F. X. Sinnesbichler, “Hybrid millimeter-wave push–push oscillators using silicon–germanium HBTs, IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 422–430, Feb. 2003.
[11]鄒育霖,Ka 頻段低相位雜訊雙推式振盪器之研製,國立中央大學電機工程研究所碩士論文,民國九十五年。
[12]黃大容,應用於2.4/5.7-GHz 雙頻WLAN 射頻收發機之系統規劃及RF CMOS晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[13]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO, IEEE J. Solid-State circuits, vol. 37, no. 12, pp. 1728–1736, Dec. 2002.
[14]X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS, IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[15]M. Danesh, J. R. Long, R. A. Hadaway, and D. L. Harame, “A Q-factor enhancement technique for MMIC inductors, in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1998, pp. 183–186.
[16]Y.-H. Cho, M.-D. Tsai, H.-Y. Chang, C.-C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies, in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2005, pp. 131–134.
[17]L. Li, P. Reynaert, and M. S. J. Steyaert, “Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank, IEEE J. Solid- State Circuits, vol. 44, no. 7, pp. 1950–1958, Jul. 2009.
[18]T. Copani, H. Kim, B. Bakkaloglu, and S. Kiaei, “A 0.13-μm CMOS local oscillator for 60-GHz applications based on push-push characteristic of capacitive degeneration, in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2010, pp. 153–156.
[19]H.-C. Chiu and C.-P. Kao, “A wide tuning range 69 GHz push-push VCO using 0.18 μm CMOS technology, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 97–99, Feb. 2010.
[20]Y.-H. Kuo, J.-H. Tsai, T.-W. Huang, and H. Wang, “A V-band VCO using fT-doubling technique in 0.18-μm CMOS, in IEEE Asia-Pacific Microw. Conf., Dec. 2011, pp. 251-254.
[21]高曜煌,射頻鎖相迴路IC 設計,滄海書局,民國94 年10 月。
[22]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[23]郭信宏,應用於 802.11 WLAN之2GHz及5GHz CMOS頻率合成器RFIC之設計研究,國立成功大學電機工程學系碩士論文,民國九十三年。
[24]A. Aktas and M. Ismail, CMOS PLLs and VCOs for 4G Wireless, Kluwer Academic Publishers, 2004.
[25]劉深淵,楊清淵,鎖相迴路,滄海書局,民國95 年。
[26]林金龍,應用於多標準/多模態可重組式共存系統之低功率高效能鎖相迴路,國立成功大學電機工程學系碩士論文,民國一百年。
[27]王銓慶,應用於MB-應用於MB-OFDM Mode-1 UWB接收機之,CMOS壓控振盪器與頻率合成器的研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。.
[28]F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen “A novel vital-sign sensor based on a self-injection-locked oscillator, IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[29]R. Adler, “A study of locking phenomena in oscillators, Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
[30]H. M. Cheema, R. Mahmoudi, A. H. M. van Roermund, 60-GHz CMOS Phase-Locked Loops, Springer, 2010.
[31]B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers, IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250–1264, Jun. 2011.
[32]Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage, K-band divide-by-three injection-locked frequency divider with floating-source differential injector, IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 60–67, Jan. 2012.
[33]A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling, IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Jun. 2011.
[34]H.-Y. Chang and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications, IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[35]Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, “An ultra-low-power injection locked transmitter for wireless sensor networks, IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1740–1748, Aug. 2006.
[36]J.-S. Paek and S. Hong, “A 29 dBm 70.7% PAE injection-locked CMOS power amplifier for PWM digitized polar transmitter, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 637–639, Nov. 2010.
[37]B. Razavi, “A study of injection locking and pulling in oscillators, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[38]H.-C. Chang, “Stability analysis of self-injection-locked oscillators IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 1989–1993, Sep. 2003.
[39]S. Kalia, M. Elbadry, B. Sadhu, S. Patnaik, J. Qiu, and R. Harjani, “A simple, unified phase noise model for injection-locked oscillators, in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2011, pp. 465–468.
[40]L. J. Paciorek, “Injection locking of oscillators, Proc. IEEE, vol. 53, no. 11, pp. 1723–1728, Nov. 1965.
[41]羅珮華,毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電機工程研究所碩士論文,民國一百零一年。
[42]S.-L. Jang, R.-K. Yang, C.-W. Chang, and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 311–313, May 2009.
[43]林育聖,60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
[44]C. C. Boon, M. A. Do, K. S. Yeo, J. G. Ma, and X. L. Zhang, “RF CMOS low-phase-noise LC Oscillator through memory reduction tail transistor, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 51, no. 2, pp. 85–90, Feb. 2004.
[45]S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “V-Band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation, IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, June. 2005.
[46]S. Rong and H. C. Luong, “A 1 V 1.7 mW 25 GHz transformer-feedback divide-by-3 frequency divider with quadrature outputs, in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 328-331.
[47]X. P. Yu, H. M. Cheema, R. Mahmoudi, A. V. Roermund, and X. L. Yan, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, Sep. 2009.
[48]H.-K. Chiou, and S.-C. Chen, “Low phase noise Ku-band gm-boosting differential Colpitts VCO, in IEEE Asia-Pacific Microw. Conf., Dec. 2009, pp. 313-316.
[49]M. Danesh and J. R. Long, “Differentially driven symmetric microstrip inductors, IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 332–341, Jan. 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊