跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許承穎
研究生(外文):Cheng-YingHsu
論文名稱:微波雙頻帶通濾波器與CMOS毫米波晶片嵌入式濾波器之研究
論文名稱(外文):Research on Microwave Dual-Band Bandpass Filters and Millimeter-Wave CMOS On-Chip Filters
指導教授:莊惠如莊惠如引用關係
指導教授(外文):Huey-Ru Chuang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:93
中文關鍵詞:濾波器微波雙頻毫米波射頻電路微帶線平衡器半波長共振器四分之一波長共振器步階阻抗
外文關鍵詞:FilterBandpass filterDual-bandMicrostripMillimeter-waveCMOSBalunPassive componentStepped-impedance resonatorHalf-wavelength resonatorQuarter-wavelength resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本論文以射頻帶通濾波器為研究主軸,分為兩大部分,第一部分先提出一並聯傳輸線型式的步階阻抗共振器並應用於微波平面式雙頻帶通濾波器之設計,透過理論分析其共振器的特性、等校電路及設計圖表。此外,針對控制雙頻耦合係數及外部品質因素的方法也具體地探討。為了驗證其設計方法的正確性,本論文提出了三種不同設計考量的濾波器設計包含一般非鄰近雙通帶、鄰近雙通帶及縮小化的設計,並提出完整的設計流程與實作量測。在論文的第二部分提出可應用於毫米波CMOS單晶片收發機的CMOS晶片嵌入式濾波器的研究,在此部分本文提出了三個以TSMC CMOS 0.18微米標準製程的晶片嵌入式濾波器,包含了60-GHz雙模態共振器帶通濾波器、77-GHz微小化雙模態共振器帶通濾波器以及具平衡及非平衡式輸出的77-GHz帶通濾波器,該設計將有助於完成CMOS毫米波單晶片收發機的整合。
In this dissertation, two parts of the research on planar bandpass filters (BPFs) are presented. At first, the shunted-line stepped-impedance resonator (SLSIR) is proposed for the design of the planar dual-band bandpass filter. The behavior of SLSIR and the design chart are introduced and analyzed. The controlling schemes for coupling coefficients and external quality factors of the two passbands are discussed. To validate the design method, three kinds of microstrip bandpass filters for conventional non-close passbands, close passbands and compact size design are demonstrated. Secondly, the studies of the millimeter-wave (MMW) CMOS on-chip filters are for pursuing the RF system-on-chip (SoC) of the MMW CMOS single-chip transceiver. The designs and fabrications with TSMC 0.18-um CMOS of a 60-GHz BPF using the dual-mode ring resonator, a 70-GHz compact BPF, and a 77-GHz BPF with balanced and unbalanced outputs are presented. The designed MMW CMOS on-chip BPFs are useful for the integrated design of the MMW CMOS single-chip RF transceiver.
Chapter 1 Introduction 1
1.1 General introduction 1
1.2 Outline of dissertation 4

Chapter 2 Dual-Band Bandpass Filter Using Shunted-Line Stepped-Impedance Resonator (SLSIR) 7
2.1 Introduction 7
2.2 Stepped-impedance resonator (SIR) 9
2.3 Analysis of SLSIR 9
2.3.1 General purpose of SLSIR 11
2.3.2 Simplified SLSIR with fodd2nd fixed 13
2.4 Design methods for dual-band bandpass filter using SLSIR 18
2.4.1 Dual-feeding structure for controlling external quality factor 20
2.4.2 Non-uniform ULSR for controlling coupling coefficient 22
2.5 Simulation and measurement results 26
2.6 Summary 30

Chapter 3 Miniaturized Dual-Band Bandpass Filter Using Quarter-Wavelength Shunted-Line Stepped-Impedance Resonator (SLSIR) 31
3.1 Introduction and motivation 31
3.2 Design methodology 34
3.2.1 Quarter-wavelength SLSIR 34
3.2.2 Compact dual-band bandpass filter design 36
3.3 Simulation and measurement results 40
3.4 Summary 42

Chapter 4 Dual-Band Bandpass Filter Using Shunted-Line Stepped-Impedance Resonator (SLSIR) with Closely Specified Passbands 43
4.1 Introduction and motivation 43
4.2 Analysis of shunted-line stepped-impedance resonator (SLSIR) 45
4.3 Design of dual-band filter with close specified passbands 47
4.3.1 Determination of coupling coefficient and external quality factor 47
4.3.2 Layout arrangement and transmission zeros 48
4.4 Simulation and measurement results 57
4.5 Summary 62

Chapter 5 Millimeter-Wave CMOS On-Chip Bandpass Filters 63
5.1 Introduction of MMW passive on-chip components 63
5.2 Microstrip line in TSMC CMOS 0.18-μm CMOS structure 67
5.3 Design of 60-GHz CMOS on-chip filter 67
5.3.1 Dual-mode ring resonator (DMRR) 67
5.3.2 Stepped-impedance matching network 69
5.3.3 Simulation and measurement results 70
5.4 Design of 70-GHz miniaturized CMOS on-chip filter 72
5.4.1 Simulation and measurement results 76
5.5 Design of 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs 77
5.5.1 Simulation and measurement results 79
5.6 Summary 81

Chapter 6 Conclusion 83

References 85

Publication list 93
[1]L. C. Tsai and C. W. Hsue, “Dual-band bandpass filters using equal-length coupled- serial-shunted lines and Z-transform technique, IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1111 – 1117, Apr. 2004.
[2]B. J. Chen, T. M. Shen, and R. B. Wu, “Dual-band vertically stacked laminated waveguide filter design in LTCC technology, IEEE Trans. Microw. Theory Tech., vol. 57, no. 6, pp.1554-1562, Jun. 2009.
[3]G. L. Dai, X. Y. Zhang, C. H. Chan, Q. Xue, and M. Y. Xia, “An investigation of open- and short-ended resonators and their applications to bandpass filters, IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2203-2210, Sep. 2009.
[4]J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 10, pp. 472-474, Oct. 2004.
[5]H. M. Lee, C. R. Chen, C. C. Tsai, and C. M. Tsai, “Dual-band coupling and feed structure for microstrip filter design, in IEEE MTT-S Int. Microw. Symp. Dig., 2004, vol. 3, pp. 1971-1974.
[6]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped-impedance resonators, IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
[7]S. F. Chang, Y. H. Jeng, and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs, Electron. Lett., vol. 40, no. 1, pp. 38–39, 2004.
[8]J. T. Kuo and H. P. Lin, “Dual-band bandpass filter with improved performance in extended upper rejection band, IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824-829, Apr. 2009.
[9]S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds, IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 644-646, Oct. 2005.
[10]X. Y. Zhang, J. Shi, J. X. Chen, and Q. Xue, “Dual-band bandpass filter design using a novel feed scheme, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 350-352, Jun. 2009.
[11]M. Zhou, X. Tang and F. Xiao, “Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 347-349, Jun. 2009.
[12]C. Y. Chen and C. Y. Hsu, “Simple and effective method for microstrip dual-band filter design, IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 669-671, May 2006.
[13]C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators, IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp.3550-3558, Dec. 2006.
[14]J. T. Kuo, T. H. Yeh, and C. C. Yeh “Design of microstrip bandpass filters with a dual-passband response, IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3788-3793, Dec. 2005.
[15]H. M. Lee, C. M. Tsai, and C. C. Tsai, “Planar filter design with fully controllable second passband, IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3429–3439, Nov. 2005.
[16]H. M. Lee and C. M. Tsai, “Dual-band filter design with flexible passband frequency and bandwidth selections, IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1002–1009, May 2007.
[17]A. S. Liu, T. Y. Huang, and R. B. Wu, “A dual wideband filter design using frequency mapping and stepped-Impedance resonators, IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2921-2929, Dec. 2008.
[18]Q. X. Chu and F. C. Chen, “A Compact dual-band bandpass filter using meandering stepped impedance resonators, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 320-322, May 2008.
[19]C. Y. Chen, C. Y. Hsu, and H. R. Chuang, “Design of miniature planar dual-Band filter using dual-feeding structures and embedded resonators, IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 669-671, Dec. 2006.
[20]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[21]P. Mondal and M. K. Mondal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators, IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–154, Jan. 2008.
[22]F. C. Chen and Q. X. Chu, “Novel multistub loaded resonator and its application to high-order dual-band filters, IEEE Trans. Microw. Theory Tech., vol. 58, no.6, pp. 1551-1556, Jun. 2010
[23]W. S. Chang and C. Y. Chang, “Analytical design of microstrip short-circuit terminated stepped-impedance resonator dual-band filter, IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1730–1739, Jul. 2011.
[24]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, Springer, 2000, ch. 2.
[25]J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans. Microw. Theory Tech, vol. 44, no. 11, pp. 2099–2109, Nov. 1996.
[26]C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill Book Co., Inc., pp. 230. 1948.
[27]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley inter-science, 2001, ch. 8.
[28]C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “Design of microstrip miniature dual-band filter using embedded resonators, in Proc. Asia Pacific Microw. Conf., 2006, pp. 1811-1813.
[29]C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure, IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362~2367, Oct. 2002.
[30]H. W. Wu, Y. F. Chen, and Y. W. Chen, “Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114-116, Mar. 2012.
[31]X. B. Wei, Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, “Compact dual-band bandpass filter with improved stopband characteristics, Electron. Lett., vol. 48, no. 12, pp. 704-705, Jun. 2012.
[32]M. Hayati, L. Noori, and A. Adinehvand, “Compact dual-band bandpass filter using open loop resonator for multimode WLANs, Electron. Lett., vol. 48, no. 10, pp. 573-574, May 2012.
[33]Y. H. Cho, X. G. Wang, and S. W. Yun, “Design of dual-band interdigital bandpass filters using both series and shunt resonators, IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 111-113, Mar. 2012.
[34]J. Lee and Y. Lim, “Compact dual-band bandpass filter with good frequency selectivity, Electron. Lett., vol. 47, no. 25, pp. 1376-1377, Dec. 2011.
[35]Z. Zhang, Y. C. Jiao, X. M. Wang, and S. F. Cao, “Design of a compact dual-band bandpass filter using opposite hook-shaped resonator, IEEE Microw. Wireless Compon. Lett., vol.21, no. 7, pp. 359-361, Jul. 2011.
[36]X. Luo, H. Qian, J. G. Ma, K. Ma, and K. S. Yeo, “Compact dual-band bandpass filters using novel embedded spiral resonator (ESR), IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 435-437, Aug. 2010.
[37]X. Luo, J. G Ma, and K. S Yeo, “Dual-band bandpass filter using embedded spiral resonator and broadside-coupled meander slot-line, Electron. Lett., vol. 46, no. 16, pp. 1135-1137, Aug. 2010.
[38]C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 268-270, May. 2010.
[39]R. Y. Yang, H. Ko, C. Y. Hung, and C. S. Ye, “Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators, Progress In Electromagnetics Research, vol. 105, pp. 93-102, 2010.
[40]W. Xue, C. H. Liang, X. W. Dai, and J. W. Fan, “Design of miniature planar dual-band filter with 0 feed structures, Progress In Electromagnetics Research, vol. 77, pp. 493-499, 2007.
[41]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley Inter-science, 2001, ch. 5.
[42]S. Theerawisitpong, T. Suzuki, and Y. Utsumi “An investigation of unloaded quality factor of λ/2 and λ/4 resonators, in PIERS Proceedings, Suzhou, China, 2011, pp. 12-16.
[43]G. L. Dai, Y. X. Guo, and M. Y. Xia, “Dual-band bandpass filter using parallel short-ended feed scheme, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 325-327, Jun. 2010.
[44]C. H. Tseng and H. Y. Shao, “A new dual-band microstrip bandpass filter using net-type resonators, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 196-198, Apr. 2010.
[45]C. W. Tang, S. F. You, and I. C. Liu, “Design of a dual-band bandpass filter with low-temperature co-fired ceramic technology, IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3327-3332, Aug. 2006.
[46]R. Gómez-Garcia and M. Sánchez-Renedo, “Microwave dual-band bandpass planar filters based on generalized branch-line hybrids, IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3760-3769, Dec. 2010.
[47]R. Li and L. Zhu, “Compact UWB bandpass filter using stub-loaded multiple-mode resonator, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 40-42, Jan. 2007.
[48]Q. X. Chu and X.-K. Tian, “Design of UWB bandpass filter using stepped-impedance stub-loaded resonator, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 501-503, Sep. 2010.
[49]G. Macchiarella and S. Tamiazzo, “Design techniques for dual-passband filters, IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3265- 3271, Nov. 2005.
[50]P. Lenoir, S. Bila, F. Seyfert, D. Baillargeat, and S. Verdeyme, “Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification, IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 3090- 3097, Jul. 2006.
[51]B. Wu, C. H. Liang, P. Y. Qin, and Q. Li, “Compact dual-band filter using defected stepped impedance resonator, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 674-676, Oct. 2008.
[52]M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, Ch. 6. Springer, 2000.
[53]C. M. Tsai, S. Y. Lee, and H. M. Lee, “Transmission-line filters with capacitively loaded coupled lines, IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1517-1524, May. 2003.
[54]C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Design of CMOS for 60 GHz applications, in Proc. IEEE Solid-State Circuits Conf., 2004, pp. 440-441.
[55]S. Sun, J. Shi, L. Zhu, S. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-mm CMOS technology, IEEE Electron Device Lett., vol. 28, no. 3, pp. 220–222, Mar. 2007.
[56]M. Miao and C. Nguyen, “A novel multilayer aperture-coupled cavity resonator for millimeter-wave CMOS RFICs, IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 783-787, Apr. 2007.
[57]B. Dehlink, M. Engl, K. Aufinger, and H. Knapp, “Integrated bandpass filter at 77 GHz in SiGe technology, IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 346-348, May 2007.
[58]M. G. Lee, T. S. Yun, K. B. Kim, D. H. Shin, T. J. Baek and J. C. Lee, “Design of millimeter-wave bandpass filters with λg/4 short stubs using GaAs surface micromatchining, in 35th European Microw. Conf., 2005, vol. 2.
[59]M. F. Lei and H. Wang, “Implementation of reducing-size dual-mode ring filters in LTCC and MMIC processes at millimeter wave frequencies, in 36th European Microw. Conf., 2006, pp. 537-540.
[60]C.-H. Liu, C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “60-GHz bandpass filter with ACMRC resonator fabricated using 0.18-m CMOS technology,“ Microw. and Optical Tech. Lett., vol. 51, no. 3, pp. 597-600, Mar. 2009.
[61]L.-K. Yeh, C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang “A 24/60-GHz CMOS on-chip dual-Band bandpass filter using tri-section dual-behavior resonators, IEEE Electron Device Lett., vol. 29, no. 12, pp. 1373-1375, Dec. 2008.
[62]Yang B., E. Skafidas, R. Evans, “Design of integrated millimeter wave microstrip interdigital bandpass filters on CMOS technology,’ in 37th European Microw. Conf., Oct. 2007, pp. 680-683.
[63]S. C. Chang, Y. M. Chen, S. F. Chang, Y. H. Jeng, C. L. Wei, C. H. Huang, and C. P. Jeng, “Compact millimeter-wave CMOS bandpass filters using grounded pedestal stepped-impedance technique, IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3850-3858, Dec. 2010.
[64]L. Nan, K. Mouthaan, Y. Z. Xiong, J. Shi, S. C. Rustagim, and B. L. Ooi, “Design of 60- and 77-GHz narrow-bandpass filters in CMOS technology, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 738–742, Aug. 2008.
[65]H. C. Lu, C. S. Yeh, and S. A. Wei,, “Miniaturised 60 GHz rectangular ring bandpass filter in 90 nm CMOS technology, Electronics Lett., vol. 47, no. 7, pp. 448-450, Mar. 2011.
[66]L. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator, Electron. Lett., vol. 8, no. 12, Jun. 1972.
[67]L. H. Hsieh and K. Chang, “Compact Low insertion-loss, sharp-rejection, and wide-bend microstrip bandpass filters, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1241-1246, Apr. 2003.
[68]C. H. Wu, C. H. Wang, S. Y. Chen, and C. H. Chen, “Balanced-to-unbalanced bandpass filters and the antenna application, IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2474-2482, Nov. 2008.
[69]L. K. Yeung and K. L. Wu, “A dual-band coupled-line balun filter, IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2406-2411, Nov. 2007.
[70]L. K. Yeung and K. L. Wu, “An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load, IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1512- 1518, Jun. 2006.
[71]C. L. Tsai and Y. S. Lin, “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology, IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[72]C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology, IEEE Electron Device Lett., vol. 29, no. 3, pp. 246–248, Mar. 2008.
[73]L. K. Yeh, C. Y. Chen, and H. R. Chuang, “A millimeter-wave CPW CMOS on-chip bandpass filter using conductor-backed resonators, IEEE Electron Device Lett., vol. 31, no. 5, pp. 399-401, May. 2010.
[74]I. Haroun, J. Wight, C. Plett, A. Fathy, and D. C. Chang, “Experimental analysis of a 60 GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios, IEEE Microw.Wireless Compon. Lett., vol. 20, no. 4, pp. 211-213, Apr. 2010.
[75]J. X. Liu, C. Y. Hsu, H. R. Chuang, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS marchand balun, in IEEE Radio Frequency Integrated Circuits Symposium, pp. 445-448, Jun. 2007.
[76]S. S. Hsu, K. C. Wei, C. Y. Hsu, and H. R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi–antenna fabricated using 0.18-μm CMOS technology, IEEE Electron Device Lett., vol. 29, no. 6, pp. 625-627, Jun. 2008.
[77]D. M. Pozar, Microwave Engineering, Ch. 3-8, 3rd Edition, Wiley inter-science, 2005.
[78]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Ch. 4, Wiley inter-science, 2001.
[79]T. C. Edwards and M. B. Steer, Foundations of Interconnect and Microstrip Design, Wiley Inter-science, 2000.
[80]K. Chang and L.H. Hsieh, Microwave Ring Circuits and Related Structure, Second Edition, Wiley inter-science, 2004, ch. 7.
[81]W. K. W. Ali' and S. H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates, in IEEE AP-S Int. Symp., Jun. 1998, vol. 2, pp. 676–679.
[82]A. Görür and C. Karpuz, “Miniature dual-mode microstrip filters, IEEE Microw.Wireless Compon. Lett., vol. 17, no. 1, pp. 37-39, Jan. 2007.
[83]R. Mongia, I. Bahl, and P. Bharita, RF and Microwave Coupled-Line Circuits, Artech House, Bonston, 1999.
[84]C. C. Yu and K. Chang, “Transmission-line analysis of a capacitively coupled microstrip-ring resonator, IEEE Trans. Microw. Theory Tech., vol. 45, no. 11, pp. 2018-2024, Nov. 1997.
[85]IE3D Simulator, Zeland Software, Inc., Fremont, CA, 1997
[86]J. Laskar, S. Pinel, D. Dawn, S. Sarkar, B. Perumana, and P. Sen, “The next wireless wave is a millimeter wave, Microwave Journal, pp 22-36, Aug. 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊