跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 05:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許洛嘉
研究生(外文):Lou-JiaHsu
論文名稱:使用背景模型、霍夫轉換與模板比對建立人次計數系統
論文名稱(外文):People Counting Using Background Modeling,Hough Transform and Template Matching
指導教授:連震杰
指導教授(外文):Jenn-Jier Lien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學資訊研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:64
中文關鍵詞:霍夫轉換模板比對
外文關鍵詞:hough transformtemplate matching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電腦科學的進步快速,以及近年來影像設備的價格也普遍平易近人,以視覺感知為基礎的智慧型監控系統一直是近年來的熱門研究主題。利用電腦視覺的技術,可以讓攝影機對擷取的影像進行分析,使其具有偵測、追蹤以及辨識的功能。透過這樣的方式,不僅能夠降低成本還能節省人力資源。本論文提出一套新的進出人次計數的系統,他是利用頭頂攝影機垂直攝錄的系統。在移動物體偵測部分,一開始先建立背景模型,然後使用背景相減法取出移動的前景,並且加入去除陰影的機制,改善偵測的結果,再利用連通元件標籤擷取移動物體。在行人偵測部分,先透過霍夫轉換找出可能是人頭存在的地方,然後再利用Circle-Like可信度過濾掉非人頭的移動物體,偵測出行人位置。最後則是利用霍夫轉換與模板比對的結合,追蹤偵測到的行人,同時進行進出人數的計數。實驗的部分我們會對只使用移動物體偵測行人的人次計數系統做比較,並分析進出人數統計的結果,以及行人偵測的正確性結果。
With the advancement of computer technologies and the low price of capturing devices recently, the topics of vision-based intelligent surveillance system have become more and more popular. Camera can automatically analyze captured images information and can embed the functionalities of detection, tracking, and identification by technique of computer vision. The advantages include saving cost and saving human resources. In this thesis, we present a new system of counting number of people that pass the view of an overhead mounted camera. In motion object detection, first, we created the background model, then we segmented foreground pixel from input image by using background subtraction. Second, we embed function of reject shadow of foreground pixel to improve result of segment. Third we use connect component label to capture information of moving object. In people detection, we use hough transform to find candidates of moving people and we present a method of head detection from candidates by Circle-Like Confidence Value. we tracked detected people by combining hough transform and template matching, and the total numbers of two ways passing people is counted simultaneously. In Experiment, we compared with another people counting system based on motion object detection, and presented the analysis of the total numbers of two ways passing people and correction of people detection.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究動機與背景 1
1.2 相關研究 3
1.3 系統架構 5
1.4 論文架構 8
第二章 使用背景模型與陰影去除來偵測移動物體 10
2.1 背景模型建立與去除陰影 12
2.1.1 建立背景模型 12
2.1.2 前景偵測 12
2.1.3 去除陰影 13
2.2 背景更新與移動物體偵測 16
2.2.1 背景模型更新 16
2.2.2 擷取移動物體 19
第三章 使用霍夫轉換作移動人頭偵測 21
3.1 移動物體的邊緣偵測與分析 23
3.2 使用霍夫轉換偵測出候選的移動人頭 27
3.2.1 建立霍夫轉換參數空間A 28
3.2.2 尋找候選人頭的位置 32
3.3 利用Circle-Like可信度過濾出移動人頭 34
3.3.1 過濾並偵測人頭 35
3.3.2 將偵測人頭加入追蹤序列 38
第四章 使用霍夫轉換與模板比對追蹤人頭並計數人次 41
4.1 使用霍夫轉換追蹤人頭 43
4.2 使用模板比對修正人頭位置 47
4.3 使用人頭的追蹤結果計數進出人次 48
第五章 實驗結果 51
5.1 資料蒐集 51
5.2 實驗結果與數據分析 54
5.2.1 實驗結果比較 54
5.2.2 實驗數據分析 58
第六章 結論 60
Reference 61

[1]B. Antic’, D. Letic’, D. C’ulibrk and V. Crnojevic, “K-Means Based Segmentation for Real-Time Zenithal People Counting, IEEE International Conference on Image Processing, pp.2565-2568, 2009.
[2]J. Barandiaran, B. Murguia, and F. Boto, “Real-time People Counting using Multiple Lines, IEEE Ninth International Workshop on Image Analysis for Multimedia Interactive Services, pp. 159–162, 2008.
[3]M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, Robust Tracking-by-Detection using a Detector Confidence Particle Filter, IEEE ICCV, pp. 1515-1522, 2009.
[4]G.R. Bradski, “Computer Vision Face Tracking for Use in a Perceptual User Interface, Intel Technology Journal, Vol.2, No.2, pp. 12-21, 1998.
[5]J. Barron, D. Fleet, and S. Beauchemin, “Performance of Optical Flow Techniques, International Journal of Computer Vision, Vol. 12, No. 1, pp. 43–77, 1994.
[6]J. Bescos, J.M. Menendez, and N. Garcia, “Dct based Segmentation Applied to a Scalable Zenithal People Counter, IEEE International Conference on Image Processing, Sept. 2003, vol. 3, pp. III–1005–8vol.2.
[7]G. Bishop, G. Welch. An Introduction to the Kalman Filter. University of North Carolina SIGGRAPH 2001 course notes. ACM Inc., North Carolina,2001.
[8]J. Chen, Y. He, and J. Wang, “Multi-Feature Fusion Based Fast Video Flame Detection, Building and Environment, 2009.
[9]T.H. Chen & C.W. Hsu: An Automatic Bi-Directional Passing-People Counting Method Based on Color Image Processing, IEEE 37th Annual 2003 Int’l Carnahan Conf, pp.200-207, 2003.
[10]Y. Cheng, “Mean Shift, Mode Seeking, and Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:790-799, 1995.
[11]R. Cutler, L. S. Davis, “Robust Real-time Periodic Motion Detection, Analysis, and Applications, IEEE Transactions on Volume 22 Pattern Analysis and Machine Intelligence, Issue 8, 2000.
[12]N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection, In CVPR, 2005.
[13]A. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric Model for Background Subtraction, Proceedings of the European Conference on Computer Vision, pp.751-767, 2000.
[14]A. Gardel Vicente, I. Bravo Munoz, P. Jimenez Molina, J. L. Lazaro Galilea, Embedded Vision Modules for Tracking and Counting People, IEEE IAM, pp. 3004-3011, 2009.
[15]D. Huang and Tommy W. S. Chow, “A People-Counting System using a Hybrid RBF Neural Network, Neural Process.Lett., vol. 18, no. 2, pp. 97–113, 2003.
[16]M. Isard, A. Blake,CONDENSATION—Conditional Density Propagation for Visual Tracking Advances in Neural Information Processing Systems,1997.
[17]Y. Kobayashi, D. Sugimura, K. Hirasawa, N. Suzuki, H. Kage, Y. Sato,and A. Sugimoto, “3D Head Tracking using the Particle Filter with Cascaded Classifiers, in Proc. BMVC, 2006, pp. 37–46.
[18]B. Leibe, K. Schindler, and L. Van Gool., Coupled Detection and Trajectory Estimation for Multi-Object Tracking. In ICCV,2007.
[19]D. Maio, D. Maltoni Real – Time Face Location on Gray-Scale Static Images, Pattern Recognition, vol.33, no.9, pp.1525-1539, September 2000.
[20]L. Matthies, R. Szeliski, and T. Kanade, “Kalman Filter-Based Algorithms for Estimating Depth from Image Sequences, International Journal of Computer Vision, vol. 3, pp. 209-238, 09/01. 1989.
[21]B. P. L. Lo and S. A. Velastin, “Automatic Congestion Detection System for Underground Platforms, Proceedings of International Symposium on Intelligent Multimedia, Video, and Speech Processing, pp. 158-161, 2001.
[22]P. Perez, C. Hue, J. Vermaak and M. Gangnet, “Color-Based Probabilistic Tracking, ECCV, Vol.1, pp. 661-675, 2002.
[23]Prati, et al., “Detecting moving shadows: algorithms and evaluation, IEEE Trans. Pattern Analysis and Machine Intelligence, 25, pp. 918-923, July 2003.
[24]C. Ridder, O. Munkelt, and H. Kirchner, “Adaptive Background Estimation and Foreground Detection using Kalman-Filtering, Proceedings of International Conference on Recent Advances in Mechatronics, pp. 193–199, 1995.
[25]C. Shan, Y. Wei, T. Tan and F. Ojardias, “Real Time Hand Tracking by Combining Particle Filtering and Mean Shift, International Conference on Automatic Face and Gesture Recognition, pp.669-674, 2004.
[26]H. Septian, J. Tao, and Y.P. Tan, “People Counting by Video Segmentation and Tracking, IEEE International Conference on Control, Automation, Robotics and Vision, 2006.
[27]L. Snidaro, C. Micheloni, and C. Chiavedale, “Video Security for Ambient Intelligence, IEEE Transactions on Systems, Man and Cybernetics, vol. 35, no.1, pp. 133–144, 2005.
[28]S. Velipasalar, Y.-L. Tian, and A. Hampapur, “Automatic Counting of Interacting People by Using a Single Uncalibrated camera, IEEE International Conference on Multimedia and Expo, pp. 1265-1268, 2006.
[29]C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-Time Tracking of the Human Body, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, 1997.
[30]Shao-Yi Chien, Yu-Wen Huang, Bing-Yu Hsieh, Shyh-Yih Ma, and Liang-Gee Chen, “Fast Video Segmentation Algorithm with Shadow Cancellation, Global Motion Compensation, and Adaptive Threshold Techniques,IEEE Transactions on Multimedia, vol. 6, no. 5, pp.732–748, 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top