跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇聖涵
研究生(外文):Sheng-HanSu
論文名稱:非極性氮化鎵材料與元件之研究
論文名稱(外文):Investigation of Nonpolar GaN-based Materials and Devices
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:111
中文關鍵詞:非極性氮化鎵有機金屬氣相磊晶
外文關鍵詞:NonpolarGaNMOVPE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本碩士論文的主要目的是利用有機金屬氣相沉積法進行研究以及改善a面非極性氮化鎵薄膜成長於r面藍寶石的材料與元件特性,研究內容包含改善磊晶品質的表面、光學以及元件特性等。而我們發現藉由插入一層銦含量漸變式多重量子井結構能有效地改善a面氮化銦鎵/氮化鎵多重量子井的光學特性。首先,我們在氮化鎵薄膜層與氮化銦鎵/氮化鎵多重量子井結構中間插入一層銦含量漸變式多重量子井結構並研究其主動層的光學特性變化。此漸變式多重量子井分別使用790, 810, 和830 度C三種不同成長溫度,並控制在同樣的反應源流量下成長。在變溫的光激發光量測下,其變溫的光極化率、活化能、以及具有微笑曲線的半高寬值均在此論文中探討與研究。另一方面,在高解析度的x光繞射及變溫光激發光分析下,我們可發現具有較多對數的多重量子井結構明顯地改善其晶格品質。在變溫光激發光量測結果計算之下,830度C樣品的活化能可以到達149.9 meV,其原因推測是較少的銦聚集現象以及較少的局限能態。
接著,插入漸變銦含量的多重量子井結構可以直接應用在氮化鎵相關元件上,根據本實驗室先前探討過的單邊側向磊晶成長法用以降低a面氮化鎵的缺陷密度,我們利用此方法製成擁有極佳特性的元件。首先,我們研究了利用單邊側向成長法製備的a面氮化鎵金屬-半導體-金屬光檢測器,並研究材料表面缺陷與電極方向對元件的影響。我們發現在1伏特的偏壓下,其元件特性可達到高光暗電流比 (~103),高光響應率 (~1 A/W) ,以高紫外光對可見光的抑制比 (~103)。另外,當氮化鎵基面的缺陷方向與元件金屬電極相互平行時,其元件特性因為缺陷影響較大而具有較高的內部增益效應。第二部分,我們與德國阿亨大學的RWTH, GaN devices technology合作製作出a面氮化鎵高電子遷移率電晶體。雖然其元件的漏電流非常高 (370 mA/mm),但是電晶體依然可以運作。所以,我們同時也研究a面氮化鎵薄膜的成長條件,並將其最佳化,以期能得到更好的元件特性。
最後,我們研究了不同成長溫度的緩衝層、在反應過程中進行氫氣蝕刻、以及調變氫氣蝕刻後,再成長氮化鎵薄膜之五三比。首先,因為藍寶石基板與氮化鎵薄膜晶格不匹配的原因,我們成長不同溫度的氮化鋁緩衝層並且比較其特性。成長溫度分別為600及1150度C,而低溫的氮化鋁不論是在晶格品質或是表面形貌上,明顯地優於高溫的氮化鋁,從X光繞射儀分析之半高寬值從1564 arcsec 降低到1119 arcsec。此外,高溫的氮化鋁也有表面裂痕的現象,而表面裂痕會直接影響到元件特性,所以我們利用了低溫的氮化鋁當作成長a面非極性氮化鎵相關結構與元件的緩衝層。第二,我們利用氫氣在金屬氣相沉積法中進行蝕刻,並對於蝕刻次數與蝕刻氣體壓力進行研究與探討。當蝕刻次數從一次增加到兩次時,X光繞射分析的半高寬顯示從1023 arcsec 降低到917.8 arcsec,但表面形貌的結果與晶格品質分析結果相反。考慮到元件的特性,最後,我們選擇一次蝕刻來製成元件。最後,成長氮化鎵薄膜的五三比也扮演著影響晶格品質、表面形貌以及元件特性的重要角色。在高五三比下,m軸和c軸的成長速率趨於接近,並可以得到較平坦,幾乎無坑洞的a面氮化鎵薄膜。而在最佳化條件下,其粗糙度的方均根值從22.11奈米降低到4.3奈米。這些實驗結果提供了未來a面氮化鎵相關材料製成元件更多資訊,並指出a面氮化鎵材料應用於各式元件上具有極大的潛力。

The main goal of this thesis is to investigate and improve the crystalline quality, surface characteristics, and devices performance for nonpolar a-plane GaN film grown on r-plane sapphire. The direct-growth conditions of a-plane GaN on r-plane sapphire by metal organic chemical vapor deposition (MOCVD) have been optimized in a two-step process with step-stage multiple quantum wells (MQWs) structures. In this work, a set of step-stage multiple quantum wells (MQWs) is inserted between underlying GaN and overlying highly Indium composite MQWs to investigate it’s effectively influence on the optical properties of active region. The step-stage MQWs were deposited by varying the growth temperature, which are 790 under fixed precursor flow rate. Optical properties were investigated by means of temperature-dependent photoluminescence (TD-PL). The optical polarization ratio, activation energy, and the smile-like curve in full width at half maximum (FWHM) of PL were analyzed in detail. The XRD and temperature-dependent PL data shows the crystal quality is improved when increasing the pair of the step-stage MQW. The activation energy calculated by temperature-dependent PL was improved to 149.9 meV in the sample with 830 growth temperature due to less Indium fluctuation and localized states.
Then, as our group has investigated the one-sidewall-seed epitaxial lateral overgrowth (OSELOG) technique, we adapted the step-stage MQWs active region with the OSELOG technique to achieve higher device performance. The nonpolar a-plane GaN-based photodetectors (PDs) with step-stage MQW and OSELOG technique have been demonstrated in this thesis. We also studied the direction effect between the basel stacking faults (BSFs) in a-plane GaN and the metal electrodes. First, the performance of a-plane GaN-based MSM-PDs operated under 1 V represent high photo-to-dark current ratio (~103), higher measured responsivity (~1 A/W), and high UV-to-visible rejection ratio (~103). Additionally, the performance of a-plane MSM-PD has greater internal gain effect when the direction of BSFs was parallel to metal electrodes. That means the nonpolar a-plane GaN-related materials have potential to fabricate high performance polarization-sensitive PD (PSPD). Also, we demonstrated the a-plane GaN-based high electron mobility transistors (HEMTs) and co-worked with GaN device technology, RWTH Aachen University, Germany. Although the leakage drain current in these transistors was at a very high level a 370 mA/mm, transistor operation could be demonstrated. According to these results, we also investigated and optimized the growth condition in a-plane GaN films.
Hence, in the last part, we improved the crystal quality by three ways such as different buffer layer with high/low growth temperatures, the in situ etching methods, and modulating V/III ratio or growth pressure. First, we have grown AlN as the buffer layer between r-plane sapphire substrate and GaN film due to the lattice mismatch. And the low and high growth temperatures of AlN are both presented which are 600 and 1150 , respectively and the low temperature AlN has shown the better crystal quality and morphology than the high temperature one which were determined by HR-XRD and AFM. The FWHM value along m-axis of XRD was improved from 1564 to 1119 arcsec. Additionally, the surface crack in the high temperature AlN is so serious that may influence the device performance. Since, we adapted the low growth temperature AlN as the buffer layer. Second, the in situ etching process is used to improve the crystal quality. We used hydrogen as our etching gas in MOCVD with etching times and etching pressure are both investigated. When etching times increased from 1 to 2, the crystal quality is obviously improved by determining the FWHM of XRD represented as 1023 arcsec to 917.8 arcsec. However, the surface morphology is opposite with XRD results. Considering the devices performance, we decided to etch the GaN template with one time. Finally, the role of V/III ratio is also important to crystal quality. The growth rates along m- and c-axis are more uniform at a high V/III ratio so that we can achieve smooth and nearly pit-free a-plane GaN film. Under our optimized condition, the roughness determined by AFM is reduced from 22.11 nm to 4.3 nm. According to aforementioned, these results show great potential of a-plane GaN materials for the fabrication high performance optoelectronic and electronic devices in the future.

Content
Abstract (in Chinese)…………………………………………………….………... I
Abstract (in English) ………………………………………………….....………III
Acknowledgements……………………………………………………………….VI
Contents………………………………………………………………….…...…VIII
Table Captions………………………………………………….………….. …..XI
Figure Captions……………………………………………….…………...…...XII
Chapter 1 Introduction 1
1-1 Evolution of III-Nitride Materials 1
1-2 The Challenges of GaN-based Devices---Quantum Confined Stark Effect …… ..3
1-2-1 Effect of QCSE in GaN-based optoelectronic devices 4
1-2-2 Development in GaN-based electronic devices 6
1-3 Key issue of nonpolar nitrides 9
1-3-1 Basic properties of nonpolar nitrides 11
1-3-2 Nonpolar nitrides nowadays 15
1-4 Overview of this thesis 18
Chapter 2 Experimental Instrument and Metrologies 21
2-1 Metal organic chemical deposition (MOCVD) system 21
2-2 Morphology Measurement Tools 28
2-2-1 Scanning electron microscope (SEM) 28
2-2-2 Atomic force microscope (AFM) 30
2-3 Physical characteristics analysis in epitaxial structures 32
2-3-1 Transmission electron microscope (TEM) 32
2-3-2 High resolution X-ray diffraction (HR-XRD) 34
2-4 Metrologies for optical properties in epitaxial structures 35
2-4-1 Cathodoluminescence (CL) 36
2-4-2 Photoluminescence (PL) 37
Chapter 3 Investigation of structure and optical properties in a-plane InGaN/GaN MQWs photodetectors 41
3-1 The Challenges of a-plane InGaN/GaN MQWs structure 41
3-2 Demonstration of step-stage InGaN/GaN MQW structure 43
3-2-1 Motivation for the insertion of Indium-step-stage MQW structure 43
3-2-2 Fabrication of step-stage InGaN/GaN MQW structure 44
3-3 Enhancement for a-plane InGaN/GaN MQW optical properties by inserting Indium-step-stage InGaN/GaN MQWs 46
3-3-1 Comparison of a-plane InGaN/GaN MQW with and without step-stage MQW 46
3-3-2 Effect of varied pair step-stage MQW 48
3-3-3 Optical properties of temperature-dependent InGaN/GaN MQW structure 53
3-4 Summary 57
Chapter 4 Demonstration of nonpolar a-plane GaN-based devices 59
4-1 A-plane GaN-based metal-semiconductor-metal photodetectors 59
4-1-1 Motivation of nonpolar GaN-based photodetectors 59
4-1-2 Different patterns of electrodes for a-plane GaN MSM PDs 61
4-1-3 Anisotropy characteristics of a-plane MSM PDs 67
4-2 Investigation of a-plane GaN-based high electron mobility transistors (HEMTs) 73
4-2-1 Motivation for GaN-based enhancement-mode HEMT 73
4-2-2 Fabrication and investigation of a-plane GaN HFETs 74
4-3 Summary 77
Chapter 5 Optimization of nonpolar a-plane GaN film 80
5-1 Methods for defect reduction of a-plane GaN on r-plane sapphire 80
5-2 Investigation of AlN buffer layer 81
5-3 Overgrowth of in situ etched GaN template 83
5-4 Modulation of V/III ratio of epitaxial growth condition 90
5-5 Summary 94
Chapter 6 Conclusion and Future prospects 96
6-1 Conclusion 96
6-2 Future prospects 98
References…….. 100

References
[1]Introduction of LED (Wikipedia): http://en.wikipedia.org/wiki/Wurtzite_crystal_structure
[2]Nakamura S, I. N. and N. S. J., Senoh M, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes.pdf, Japan. J. Appl. Phys., vol. 34, p. L1332-L1335, 1995.
[3]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol. 56, no. 16, p. R10024-R10027, Oct. 1997.
[4]V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells, Phys. Rev. B, vol. 60, pp. 8849-8858, 1999.
[5]P. Waltereit et al., “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature, vol. 406, no. 6798, pp. 865-8, Aug. 2000.
[6]M. Razeghi and a. Rogalski, “Semiconductor ultraviolet detectors, Journal of Applied Physics, vol. 79, no. 10, p. 7433, 1996.
[7]C. Carlone, A. Houdayer, H. J. V. Bardeleben, J. Cantin, and S. Raymond, “Radiation Hardness of Gallium Nitride, vol. 49, no. 6, pp. 2733-2738, 2002.
[8]D. Walker et al., “Solar-blind AlGaN photodiodes with very low cutoff wavelength, Applied Physics Letters, vol. 76, no. 4, 2000.
[9]B. W. Lim, Q. C. Chen, J. Y. Yang, and M. Asif Khan, “High responsitivity intrinsic photoconductors based on AlxGa1−xN, Applied Physics Letters, vol. 68, p. 3761, 1996.
[10]G.A. Shaw, A.M. Siegel, and J. Model, “Ultraviolet comm link for distributed sensor systems, IEEE LEOS Newslett., vol. 19, pp. 26- 29, 2005.
[11]J. Schalwig, G. Müller, O. Ambacher, and M. Stutzmann, “Group III-nitride-based sensors for combustion monitoring, Mater. Sci. Eng. B, vol. 93, pp. 207-214, 2002.
[12]A. Rogalski and M. Razeghi, “Semiconductor ultraviolet photodetectors, Opto-Electron. Rev., vol. 4, pp. 13-30, 1996.
[13]S.N. Mohammad, A. Salvador, and H. Morkoç, Emerging gallium nitride based devices. Proc. IEEE, vol. 83, 1995, pp. 1306-1355.
[14]F.A. Ponce and D.P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices, Nature (Lond.), vol. 386, pp. 351-359, 1997.
[15]C. Rivera, J. Pereiro, A. Navarro, E. Munoz, O. Brandt, and H. T. Grahn, “Advances in Group-III-Nitride Photodetectors, The Open Electrical & Electronic Engineering Journal, vol. 4, no. 1, pp. 1-9, Jan. 2010.
[16]A. Chakraborty et al., “Properties of nonpolar a-plane InGaN / GaN multiple quantum wells grown on lateral epitaxially overgrown a-plane GaN, Appl. Phys. Lett., pp. 3-5, 2005.
[17]M. McLaurin, T. E. Mates, F. Wu, and J. S. Speck, Growth of p-type and n-type m-plane GaN by molecular beam epitaxy, J. Appl. Phys., vol. 100, pp. 063707-7, 2006.
[18]M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistors based on a GaN/AlGaN heterojunction, Appl. Phys. Lett., vol. 63, no. 9, pp. 1214–1215, Aug. 1993.
[19]U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs—An overview of device operation and applications, Proc. IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002.
[20]Hussain, T., et al.: ‘GaN HFET’s with excellent low noise performance’, IEEE IEDM Tech. Dig., 2001, pp. 581–584
[21]Saito, W., et al.: ‘600 VAlGaN/GaN power HEMT: design, fabrication and demonstration of high voltage DC-DC converter’, IEEE IEDM Tech. Dig., 2003, pp. 587–590
[22]Hussain, T., et al.: ‘GaN HFET digital circuit technology’, Electron. Lett., 2003, 39, pp. 1708–1709
[23]Simon, M. Sze et al. : Physics of Semiconductor Devices, 3rd Ed., 815 pages, Wiley Interscience, Hoboken, 2007.
[24]S. Mohammad and H. Morkoc, ``Base Transit Time of GaN/InGaN Heterojunction Bipolar Transistors,' J.Appl.Phys., vol. 78, no. 6, pp. 4200-4205, 1995.
[25]Transistor (Wikipedia) : http://en.wikipedia.org/wiki/Transistor
[26]T. Oka, S. Member, and T. Nozawa, “AlGaN / GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications, Power, vol. 29, no. 7, pp. 668-670, 2008.ChenW, Wong K Y and Chen K J, Electron Device Lett. 30 430–2, 2009
[27]Uemoto Y, HikitaM, Ueno H,Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D , IEEE Trans. Electron Devices 54 3393–9, 2007
[28]X. a. Cao et al., “Depth and thermal stability of dry etch damage in GaN Schottky diodes, Applied Physics Letters, vol. 75, no. 2, p. 232, 1999.
[29]Özgür,W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohammad, B. Sverdlov, and H. Morkoç, “High transconductance-normally-off GaN MODFETs, Electronics Letters, vol. 31, no. 16, pp. 1389-1390, 1995.
[30]A. Endoh et al., “Non-Recessed-Gate Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors with High RF Performance, Japanese Journal of Applied Physics, vol. 43, no. 4, pp. 2255-2258, Apr. 2004.
[31]X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M. S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate, Electronics Letters, vol. 36, no. 8, pp. 753-754, 2000.
[32]Masatoshi Sano and Masaharu Aoki, “Epitaxial Growth of Undoped and Mg Doped GaN, Japan. J. Appl. Phys., vol. 15, pp. 1943-1950, 1976.
[33]C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. A. Khan, Ultraviolet Light Emitting Diodes Using Non-Polar a-Plane GaN-AlGaN Multiple Quantum Wells Jpn. J. Appl. Phys., vol. 42, pp. L1039-L1040, 2003.
[34]A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, Visible light-emitting diodes using a-plane GaN-InGaN multiple quantum wells over r-plane sapphire, Appl. Phys. Lett., vol. 84, pp. 3663-3665, 2004.
[35]G. Purvis, “Changing the crystal face of gallium nitride, III-Vs Review, vol. 18, no. 8, pp. 26-28, Nov. 2005.
[36]Shi You, Highly Polarized Non-polar GaN-based LED, Smart lighting engineering research center, Boston University
[37]Hsiao-Chiu Hsu, “Investigation of Nopolar GaN –based Epitaxial Growth and Optoelectronic Devices by Metalorganic Vapor Phase Epitaxy Techniqe, Nation Cheng Kung university, 2011
[38]T. Paskova, Development and prospects of nitride materials and devices with nonpolar surfaces, Phys. Status Solidi B, vol. 245, pp. 1011-1025, 2008.
[39]Y. J. Sun et al., “Impact of nucleation conditions on the structural and optical properties of M-plane GaN(11̄00) grown on γ-LiAlO, Journal of Applied Physics, vol. 92, no. 10, p. 5714, 2002.
[40]M. A. Reshchikov et al., Mater. Res. Soc. Symp. Proc. 798, Y5.53.1 (2004).
[41]Z. Chen et al., “Luminescence study of (112̄0) GaN film grown by metalorganic chemical-vapor deposition, Journal of Applied Physics, vol. 93, no. 1, p. 316, 2003.
[42]H. B. Yu et al., “Photoluminescence study of Si-doped a-plane GaN grown on r-plane sapphire by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol. 263, no. 1-4, pp. 94-98, Mar. 2004.
[43]R. Liu, a. Bell, F. a. Ponce, C. Q. Chen, J. W. Yang, and M. a. Khan, “Luminescence from stacking faults in gallium nitride, Applied Physics Letters, vol. 86, no. 2, p. 021908, 2005.
[44]P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, “Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition, Journal of Applied Physics, vol. 98, no. 9, p. 093519, 2005.
[45]E. Kuokstis et al., “Near-band-edge photoluminescence of wurtzite-type AlN, Applied Physics Letters, vol. 81, no. 15, p. 2755, 2002.
[46]N. Okada et al., “Epitaxial lateral overgrowth of a-AlN layer on patterned a-AlN template by HT-MOVPE, Journal of Crystal Growth, vol. 300, no. 1, pp. 141-144, Mar. 2007.
[47]J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, “Polarized photoluminescence and absorption in A-plane InN films, Applied Physics Letters, vol. 89, no. 15, p. 151910, 2006.
[48]S. M. Bishop et al., “Growth evolution and pendeo-epitaxy of non-polar AlN and GaN thin films on 4H–SiC (112¯0), Journal of Crystal Growth, vol. 300, no. 1, pp. 83-89, Mar. 2007.
[49]K. Domen, K. Horino, a. Kuramata, and T. Tanahashi, “Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN, Applied Physics Letters, vol. 71, no. 14, p. 1996, 1997
[50]T. Paskova, Nitrides with Nonpolar Surfaces. Weinheim: Wiley-VCH, 2008.
[51]B. Liu et al., “Anisotropic crystallographic properties, strain, and their effects on band structure of m-plane GaN on LiAlO[sub 2](100), Applied Physics Letters, vol. 92, no. 26, p. 261906, 2008.
[52]H. Amano, Presented at the 1st International Symposium on Nitride Growth, June 4–6, 2006, Linköping, Sweden.
[53]T. Paskova et al., “Polar and nonpolar GaN grown by HVPE: Preferable substrates for nitride-based emitting devices, Physica Status Solidi (a), vol. 201, no. 10, pp. 2265-2270, Aug. 2004.
[54]H. Lu et al., “Growth of a-plane InN on r-plane sapphire with a GaN buffer by molecular-beam epitaxy, Applied Physics Letters, vol. 83, no. 6, p. 1136, 2003.
[55]F. Tuomisto et al., “Defect distribution in a-plane GaN on Al2O3, Applied Physics Letters, vol. 90, no. 12, p. 121915, 2007.
[56]R. Armitage, Q. Yang, and E. R. Weber, MRS Internet J. Nitride Semicond. Res. 8, 6 (2003).
[57]M. McLaurin, T. E. Mates, and J. S. Speck, “Molecular-beam epitaxy of p-type m-plane GaN, Applied Physics Letters, vol. 86, no. 26, p. 262104, 2005.
[58]Y. Tsuchiya et al., “Control of p-Type Conduction in a-Plane GaN Grown on Sapphire r-Plane Substrate, Japanese Journal of Applied Physics, vol. 44, no. 50, p. L1516-L1518, Dec. 2005.
[59]B. Imer et al., “Improved quality nonpolar a -plane GaN/AlGaN UV LEDs grown with sidewall lateral epitaxial overgrowth (SLEO), Physica Status Solidi (a), vol. 205, no. 7, pp. 1705-1712, Jul. 2008.
[60]K.-C. Kim et al., “Study of nonpolar m-plane InGaN∕GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition, Applied Physics Letters, vol. 91, no. 18, p. 181120, 2007.
[61]R. Wang, “Enhancement/Depletion-mode HEMT Technology for III-Nitride Mixed-Signal and RF Applications, 2008.
[62]B. A. Haskell, F. Wu, M. D. Craven, S. Matsuda, P. T. Fini, T. Fujii, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, Defect reduction in (1120) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy, Appl. Phys. Lett., vol. 83, pp. 644-646, 2003.
[63]Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, “InGaN-based Multi-Quantum-Well Structure Laser Diodes, Japanese Journal of Applied Physics, vol. 35, p. L74-L76, 1996.
[64]S. Nakamura and G. Fasol, “The Blue Laser Diode, 1997 (Berlin: Springer)
[65]MOCVD (Wikipedia) : http://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy
[66]Y.D. Jhou, Y.K. Su, S.J. Chang “Epitaxial Growth and Device Fabrication of Nitride Based Photodetectors, (2008).
[67]H. Seiler, “Secondary electron emission in the scanning electron microscope, Journal of Applied Physics, vol. 54, no. 11, p. R1, 1983.
[68]REM, Prudue University : http://www.purdue.edu/rem/rs/sem.htm
[69]F. J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., vol. 75, pp. 949-983, 2003.
[70]G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett., vol. 49, no. 1, pp. 57-61, 1982.
[71]G. B. and C. F. Quate, “Atomic Force Microscope, Physical Review Letters, vol. 56, no. 9, pp. 930-933, 1986.
[72]Atomic force microscopy (Wikipedia) : http://en.wikipedia.org/wiki/Atomic_force_microscopy
[73]Nano science material : http://www.nanoscience.com/education/afm.html
[74]Transmission electron microscopy (Wikipedia) : http://en.wikipedia.org/wiki/Transmission_electron_microscopy
[75]High-resolution x-ray diffraction : http://www.panalytical.com
[76]Scott A Speakman, Ph.D., Introduction to High Resolution X-Ray Diffraction of Epitaxial Thin Films, MIT Center for Materials Science and Engineering
[77]Cathodoluminescence (Wikipedia) : http://en.wikipedia.org/wiki/Cathodoluminescence
[78]Intech open science : http://www.intechopen.com/books/cathodoluminescence
[79]Introduction of Cathodoluminescence : http://plaza.snu.ac.kr/~lee2602/atlas/cath_intro.html
[80]M. Leroux et al., “Temperature quenching of photoluminescence intensities in undoped and doped GaN, Journal of Applied Physics, vol. 86, no. 7, p. 3721, 1999.
[81]Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett., vol. 73, pp. 1370-1372,1998.
[82]H. Murotani, T. Kuronaka, Y. Yamada, T. Taguchi, N. Okada, and H. Amano,Temperature dependence of excitonic transitions in a-plane AlN epitaxial layers, J. Appl. Phys., vol. 105, p. 083533, 2009.
[83]H. Song, J. S. Kim, E. K. Kim, S.-H. Lee, J. B. Kim, J.-S. Son, and S.-M. Hwang,Nonpolar growth and characterization of a-plane InGaN/GaN quantum well structures with different indium compositions, Solid-State Electron., vol. 54, pp. 1221-1226, 2010.
[84]D. A. B. Miller et al., “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-ConfinedStark Effect, Physical Review Letters, vol. 53, no. 22, pp. 2173-2176, 1984.
[85]T. Koyama et al., “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN∕GaN blue light emitting diodes fabricated on freestanding GaN substrates, Applied Physics Letters, vol. 89, no. 9, p. 091906, 2006.
[86]T. Onuma, T. Koyama, A. Chakraborty, M. McLaurin, B. A. Haskell, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, S. Nakamura, U. K. Mishra, T. Sota, and S. F. Chichibu, Radiative and nonradiative lifetimes in nonpolar m -plane Inx Ga1-x NGaN multiple quantum wells grown on GaN templates prepared by lateral epitaxial overgrowth, J. Vac. Sci. Technol., B, vol. 25, pp. 1524-1528, 2007.
[87]D. M. Graham et al., “High quantum efficiency InGaN/GaN structures emitting at 540 nm, Physica Status Solidi (C), vol. 3, no. 6, pp. 1970-1973, Jun. 2006.
[88]Y.-H. Cho et al., “Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters, Applied Physics Letters, vol. 83, no. 13, p. 2578, 2003.
[89]H.-H. Huang and Y.-R. Wu, “Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes, Journal of Applied Physics, vol. 106, no. 2, p. 023106, 2009.
[90]S.-C. Ling et al., “Performance Enhancement of a -Plane Light-Emitting Diodes Using InGaN/GaN Superlattices, Japanese Journal of Applied Physics, vol. 48, no. 4, p. 04C136, Apr. 2009.
[91]S. R. Xu et al., “Improvements in a-plane GaN crystal quality by AlN/AlGaN superlattices layers, Journal of Crystal Growth, vol. 311, no. 14, pp. 3622-3625, Jul. 2009.
[92]M. R. Islam, Y. Ohmura, A. Hashimoto, A. Yamamoto, K. Kinoshita, and Y. Koji, “Step-graded interlayers for the improvement of MOVPE InxGa1-xN (x ∼ 0.4) epi-layer quality, Phys. Status Solidi C, vol. 7, pp. 2097-2100, 2010.
[93]V. Krishnamoorthy, P. Ribas, and R. M. Park, Strain relief study concerning the InxGa1 - xAs/GaAs (0.07 ( x ( 0.5) material system, Appl. Phys. Lett., vol. 58, pp. 2000-2002, 1991.
[94]C.-F. Huang et al., “Prestrained effect on the emission properties of InGaN∕GaN quantum-well structures, Applied Physics Letters, vol. 89, no. 5, p. 051913, 2006.
[95]K. L. Chang, J. H. Epple, G. W. Pickrell, H. C. Lin, K. Y. Cheng, and K. C. Hsieh, Strain relaxation and defect reduction in In x Ga 1-x As/GaAs by lateral oxidation of an underlying AlGaAs layer, J. Appl. Phys., vol. 88, pp. 6922-6924, 2000.
[96]S. Ghosh et al., “Polarized photoreflectance spectroscopy of strained A-plane GaN films on R-plane sapphire, Journal of Applied Physics, vol. 98, no. 2, p. 026105, 2005.
[97]M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, “Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes, Applied Physics Letters, vol. 92, no. 1, p. 011920, 2008.
[98]B. Rau et al., “In-plane polarization anisotropy of the spontaneous emission of M-plane GaN/(Al,Ga)N quantum wells, Applied Physics Letters, vol. 77, no. 21, p. 3343, 2000.
[99]V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plane InGaN/GaN quantum wells, Journal of Applied Physics, vol. 108, no. 2, p. 023101, 2010.
[100]D. Fu et al., “Modification of the valence band structures of polar and nonpolar plane wurtzite-GaN by anisotropic strain, Journal of Applied Physics, vol. 106, no. 2, p. 023714, 2009.
[101]T. Wang, J. Bai, S. Sakai, and J. K. Ho, “Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes, Applied Physics Letters, vol. 78, no. 18, p. 2617, 2001.
[102]T.-hung Hsueh et al., “Improvement of the Efficiency of InGaN–GaN Quantum-Well Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow Process, IEEE Photonics Technology Letters, vol. 21, no. 7, pp. 414-416, Apr. 2009.
[103]M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, “Phase separation in InGaN/GaN multiple quantum wells, Applied Physics Letters, vol. 72, no. 14, p. 1730, 1998.
[104]N. a. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol. 72, no. 1, p. 40, 1998.
[105]A. Yasan, R. McClintock, K. Mayes, D. H. Kim, P. Kung, and M. Razeghi, “Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes, Applied Physics Letters, vol. 83, no. 20, p. 4083, 2003.
[106]C. H. Chiu et al., “Optical properties of a-plane InGaN/GaN multiple quantum wells on r-plane sapphire substrates with different indium compositions, Journal of Applied Physics, vol. 105, no. 6, p. 063105, 2009.
[107]A. Patanè, M. Grassi Alessi, F. Intonti, A. Polimeni, M. Capizzi, F. Martell, M. Geddo, A. Bosacchi, S. Franchi, “Evolution of the Optical Properties of InAs/GaAs Quantum Dots for Increasing InAs Coverages, Physica Status Solidi (a), vol. 164, no. 1, p. 493, 1997.
[108]M. Grassi Alessi, F. Fragano, A. Patane`, and M. Capizzi, “Competition between radiative decay and energy relaxation of carriers in disordered In x Ga 1Àx AsÕGaAs quantum wells, Physical Review B, vol. 61, no. 16, pp. 985-993, 2000.
[109]P. Lefebvre et al., “Effects of GaAlN barriers and of dimensionality on optical recombination processes in InGaN quantum wells and quantum boxes, Applied Physics Letters, vol. 78, no. 11, p. 1538, 2001.
[110]Y. J. Sun, O. Brandt, M. Ramsteiner, H. T. Grahn, and K. H. Ploog, “Polarization anisotropy of the photoluminescence of M-plane (In,Ga)N/GaN multiple quantum wells, Applied Physics Letters, vol. 82, no. 22, p. 3850, 2003.
[111]M. L. Lee, J. K. Sheu, and Y.-R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N∕GaN heterojunction phototransitors with high optical gain and high rejection ratio, Applied Physics Letters, vol. 92, no. 5, p. 053506, 2008.
[112]K. S. Stevens, M. Kinniburgh, and R. Beresford, “Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111), Applied Physics Letters, vol. 66, no. 25, p. 3518, 1995.
[113]M. L. Lee et al., “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer, Applied Physics Letters, vol. 82, no. 17, p. 2913, 2003.
[114]T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, “High bandwidth efficiency solar-blind AlGaN Schottky photodiodes with low dark current, Solid State Communications, vol. 49, pp. 117-122, 2005.
[115]M. C. Chen, J. K. Sheu, M. L. Lee, C. J. Kao, and G. C. Chi, “Planar GaN p-i-n photodiodes with n[sup +]-conductive channel formed by Si implantation, Applied Physics Letters, vol. 88, no. 20, p. 203508, 2006.
[116]R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi, and M. P. Ulmer, III-nitride-based avalanche photo detectors, in SPIE, San Diego, California, USA, 2010.
[117]X. Sun et al., “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO[sub 2] nanoparticles on a GaN surface, Applied Physics Letters, vol. 98, no. 12, p. 121117, 2011.
[118]F. Xie et al., “Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate, Solid-State Electronics, vol. 57, no. 1, pp. 39-42, Mar. 2011.
[119]J. C. Carrano, T. Li, P. a. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN, Journal of Applied Physics, vol. 83, no. 11, p. 6148, 1998.
[120]T. Palacios, E. Monroy, F. Calle, and F. Omnès, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors, Applied Physics Letters, vol. 81, no. 10, p. 1902, 2002.
[121]J. W. P. Hsu et al., “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes, Applied Physics Letters, vol. 78, no. 12, p. 1685, 2001.
[122]D. Li et al., “Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors, Applied Physics Letters, vol. 98, no. 1, p. 011108, 2011.
[123]A. Navarro et al., “High responsivity A-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications, Applied Physics Letters, vol. 94, no. 21, p. 213512, 2009.
[124]C. Rivera et al., “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates, Applied Physics Letters, vol. 88, no. 21, p. 213507, 2006.
[125]C. Rivera, E. Muñoz, O. Brandt, and H. T. Grahn, “Detection of the optical polarization angle with bandpass characteristics based on M-plane GaN photodetectors, Applied Physics Letters, vol. 91, no. 20, p. 203514, 2007.
[126]J. Kolnı́k, I. H. Oğuzman, K. F. Brennan, R. Wang, and P. P. Ruden, “Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN, Journal of Applied Physics, vol. 81, no. 2, p. 726, 1997.
[127]F. Bertazzi, M. Moresco, and E. Bellotti, “Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model, Journal of Applied Physics, vol. 106, no. 6, p. 063718, 2009.
[128]C. Rivera et al., “Intrinsic photoluminescence of M-plane GaN films on LiAlO2 substrates, Journal of Applied Physics, vol. 101, no. 5, p. 053527, 2007.
[129]H. Morkoc, “ Nitride Semiconductor and Devices, Spring, New York, pp. 196, 2004
[130]H. Norde, “ A modified forward I-V plot for Sc E. Kuokstis hottky diodes with high series resistance, J. Appl. Phys., Vol. 50, pp. 5025, 1979.
[131]K. H. Baik et al., “Effects of Basal Stacking Faults on Electrical Anisotropy of Nonpolar a-Plane (11-20) GaN Light-Emitting Diodes on Sapphire Substrate, IEEE Photonics Technology Letters, vol. 22, no. 9, pp. 595-597, 2010.
[132]M. McLaurin and J. S. Speck, “p-type conduction in stacking-fault-freem -plane GaN, physica status solidi (RRL) – Rapid Research Letters, vol. 1, no. 3, pp. 110-112, May 2007.
[133] E. Kuokstis et al., “Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics, Applied Physics Letters, vol. 84, no. 16, p. 2998, 2004.
[134] M. Häberlen et al., “Low temperature photoluminescence and cathodoluminescence studies of nonpolar GaN grown using epitaxial lateral overgrowth, Journal of Applied Physics, vol. 108, no. 3, p. 033523, 2010.
[135]Masayuki Kuroda, Tetsuzo Ueda, Member, IEEE, and Tsuyoshi Tanaka, Member, “Nonpolar AlGaN / GaN Metal – Insulator – Semiconductor Heterojunction Field-Effect Transistors With a Normally Off Operation, IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 368-372, 2010.
[136]Y. Isobe et al., “Nonpolar a -Plane AlGaN/GaN Heterostructure Field-Effect Transistors Grown on Freestanding GaN Substrate, Applied Physics Express, vol. 4, no. 6, p. 064102, May 2011.
[137]M. Kuroda, H. Ishida, T. Ueda, and T. Tanaka, “Nonpolar (11-20) plane AlGaN∕GaN heterojunction field effect transistors on (1-102) plane sapphire, Journal of Applied Physics, vol. 102, no. 9, p. 093703, 2007.
[138]X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, and H. Morkoç, “Optimization of a-plane GaN growth by MOCVD on r-plane sapphire, Journal of Crystal Growth, vol. 290, no. 1, pp. 166-170, Apr. 2006.
[139]F. Wu, M. D. Craven, S.-H. Lim, and J. S. Speck, “Polarity determination of a-plane GaN on r-plane sapphire and its effects on lateral overgrowth and heteroepitaxy, Journal of Applied Physics, vol. 94, no. 2, p. 942, 2003.
[140]Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template, Applied Physics Letters, vol. 87, no. 25, p. 251915, 2005.
[141]J. L. Weyher, H. Ashraf, and P. R. Hageman, “Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits, Applied Physics Letters, vol. 95, no. 3, p. 031913, 2009.
[142]H.-C. Hsu, Y.-K. Su, S.-J. Huang, Y.-J. Wang, C.-Y. Wu, and M.-C. Chou, “Direct Growth of a -Plane GaN on r -Plane Sapphire by Metal Organic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol. 49, no. 4, p. 04DH05, Apr. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊