跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宛頴
研究生(外文):Wan-YingLi
論文名稱:氮化鋁薄膜應用於電阻式記憶體特性之研究
論文名稱(外文):The characteristics of AlN films for random resistive access memory application
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:氮化鋁薄膜電阻式記憶體氮相關空缺
外文關鍵詞:AlN thin filmRRAMnitride related vacancy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究中利用磁控濺鍍法在鉑(Pt)電極上鍍製 AlN薄膜並鍍製不同的金屬上電極製作出金屬-絕緣層-金屬(MIM)結構的電阻轉換記憶體。利用四種不同的上電極金屬(鋁(Al),鈦(Ti),銀(Ag)和鉑(Pt))釐清電阻轉換的可能機制。除此之外,調整鍍膜時間以及鍍膜氣氛來改變AlN薄膜的厚度以及N/Al組成,藉著不同的實驗變數來探討缺陷以及厚度對於電阻轉換性質的影響,最後利用氮氣氛下退火,觀察與未退火薄膜電性的差異,並比較其操作電壓、高低電阻值分佈等特性,試圖從中找出電阻轉換效應的轉換機制。
從本實驗中得到以下的重要結果:(一) AlN電阻轉換特性來自於電子在氮相關空缺中的跳躍(trap to trap hopping)。(二)高阻態過程中AlN薄膜會發生 trap-controlled space charge limited current 的效應。(三) AlN之N/Al組成改變以及退火處理均會使氮相關空缺數目產生變化,對元件的 Forming voltage 與HRS/LRS ratio造成影響。


AlN thin films were deposited on Pt/Ti/SiO2/Si using radio-frequency magnetron sputtering technique and were followed by four different top electrodes (aluminum, silver, titanium, platinum) to evaluate the dependence of the resistive switching characteristics. Besides, the deposition time and the nitrogen content in the sputtering atmosphere were changed to obtain different thickness and constituent of AlN thin films separately. Through different experimental parameters, the influence of film thickness and defects on the resistive switching behavior were discussed. At last, the influence of post-annealing conditions on the electrical properties of AlN thin films were also investigated. Through analyzing the electrical resistive switching characteristics, set and reset voltage and on/off ratio, we tried to clarify the mechanism of resistance switching more clearly.
Several important results were found from above studies. First, the resistive switching came from electrons which hopped between the nitride related defects. Second, under high resistive state, the trap-controlled space charge limited current can be seen. Third, the composition of AlN film and post-annealing would change the number of nitride related vacancies. They made effects on forming voltage and the resistance ratios of the HRS and to LRS.

第1章 前言 1
第2章 文獻回顧 2
2-1 非揮發性記憶體 2
2-1-1 鐵電記憶體(FeRAM) 2
2-1-2 磁阻記憶體(MRAM) 3
2-1-3 相變化記憶體(PRAM) 4
2-1-4 電阻式記憶體(RRAM) 5
2-2 氮化物相關簡介 8
2-2-1 氮化鋁的基本特性 9
2-3 電阻轉換效應與量測方式 12
2-3-1 電阻轉換效應的機制-燈絲理論 12
2-3-2 熱效應 13
2-3-3 陰離子參與氧化反應為機制的元件 13
2-3-4 陽離子參與氧化反應為機制的元件 14
2-4 介電層導電機制 26
2-4-1 穿隧(Tunneling) 26
2-4-2 熱發射(Thermionic emission)或蕭基發射(Schottky emission) 27
2-4-3 普爾-法蘭克發射(Poole-Frenkel emission) 28
2-4-4 歐姆效應(Ohmic) 30
2-4-5 離子電導(Ionic conduction) 30
2-4-6 空間電荷限制電流(space charge limited current, SCLC) 31
第3章 實驗方法與步驟 34
3-1 實驗流程 34
3-2 實驗步驟 35
3-2-1 基板清洗 35
3-2-2 下電極鍍製 36
3-2-3 AlN薄膜鍍製 36
3-2-4 上電極鍍製 37
3-2-5 退火條件 37
3-3 分析儀器 37
3-3-1 alpha step 37
3-3-2 SEM 38
3-3-3 AFM 38
3-3-4 XPS 38
3-3-5 GIAXRD 39
3-4 電性量測 39
第4章 實驗結果與討論 40
4-1 基於能帶理論之設計理念說明 41
4-2 不同上電極對於電阻轉換特性的影響 44
4-3 不同薄膜厚度對電阻轉換特性的影響 53
4-4 薄膜組成對電阻轉換特性的影響 59
4-5 退火處理對電阻轉換特性的影響 65
4-6 機制模型與結論 71
第5章 結論與未來展望 83
5-1 結論 83
5-2 未來展望 85
第6章 參考文獻 86

[1]G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, Status and outlook of emerging nonvolatile memory technologies, presented at the Electron Devices Meeting, IEDM Technical Digest. IEEE International, 2004.
[2]高士. (2005) 非揮發性記憶體明日之星-快閃 IC「RRAM」發展動向. 零組件雜誌. 78-88.
[3]張文淵, 以 LaNiO3 底電極開發 (Pr, Ca) MnO3 非揮發性電阻記憶體特性之研究, 2006.
[4]余昭倫. (2006, 2006) 綜觀新世代記憶體-相變化記憶(PCRAM). Digitimes 技術IT.
[5]J. C. Scott and L. D. Bozano, Nonvolatile memory elements based on organic materials, Advanced Materials, vol. 19, pp. 1452-1463, 2007.
[6]S. Liu, N. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films, Applied Physics Letters, vol. 76, p. 2749, 2000.
[7]T. F. A. Sawa, M. Kawasaki, and Y. Tokura, Hysterestic current‐voltage characteristics and resistance switching at a rectifying Ti/Pr0.7 Ca0.3 MnO3 interface Applied Physics Letters, vol. 85, pp. 012107 - 012107-3 2004.
[8]S. Seo, M. Lee, D. Seo, E. Jeoung, D. S. Suh, Y. Joung, I. Yoo, I. Hwang, S. Kim, and I. Byun, Reproducible resistance switching in polycrystalline NiO films, Applied Physics Letters, vol. 85, p. 5655, 2004.
[9]A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications, Applied Physics Letters, vol. 77, p. 139, 2000.
[10]C. Rossel, G. Meijer, D. Bremaud, and D. Widmer, Electrical current distribution across a metal–insulator–metal structure during bistable switching, Journal of Applied Physics, vol. 90, p. 2892, 2001.
[11]L. Ma, J. Liu, S. Pyo, and Y. Yang, Organic bistable light-emitting devices, Applied Physics Letters, vol. 80, p. 362, 2002.
[12]L. Ma, J. Liu, and Y. Yang, Organic electrical bistable devices and rewritable memory cells, Applied Physics Letters, vol. 80, p. 2997, 2002.
[13]M. Rozenberg, I. Inoue, and M. Sánchez, Nonvolatile Memory with Multilevel Switching: A Basic Model, Physical Review Letters, vol. 92, 2004.
[14]S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, Reproducible resistance switching in polycrystalline NiO films, Applied Physics Letters, vol. 85, p. 5655, 2004.
[15]L. Chih-Yi, W. Pei-Hsun, A. Wang, J. Wen-Yueh, Y. Jien-Chen, C. Kuang-Yi, and T. Tseung-Yuen, Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film, Electron Device Letters, IEEE, vol. 26, pp. 351-353, 2005.
[16]Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng, and C. W. Chu, Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices, Advanced Functional Materials, vol. 16, pp. 1001-1014, 2006.
[17]D. Kim, Y. Kim, and C. Lee, Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for a Mott transition, Physical Review B, vol. 74, 2006.
[18]R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nature materials, vol. 6, pp. 833-840, 2007.
[19]T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, Electronic transport in Ta2O5 resistive switch, Applied Physics Letters, vol. 91, pp. 092110-092110-3, 2007.
[20]Y. H. Do, J. S. Kwak, J. P. Hong, K. Jung, and H. Im, Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films, Journal of Applied Physics, vol. 104, p. 114512, 2008.
[21]H. M. Sungho Kim, Dipti Gupta, Seunghyup Yoo, and Yang-Kyu Choi, Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications, IEEE Transactions on Electron Devices, vol. 56, 2009.
[22]C. Chen, Y. C. Yang, F. Zeng, and F. Pan, Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device, Applied Physics Letters, vol. 97, p. 083502, 2010.
[23]H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells, Semiconductor Science and Technology, vol. 25, p. 065002, 2010.
[24]H.-M. A. Hee-Dong Kim, Yujeong Seo, and Tae Geun Kim, Transparent resistive switching memory using ITO/AlN/ITO capacitors, IEEE Electron Device Letters, vol. 32, 2011.
[25]H.-M. A. Hee-Dong Kim, Eui Bok Lee, and Tae Geun Kim, Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-based ReRAM Devices, IEEE Transactions on Electron Devices, vol. 58, 2011.
[26]H.-D. Kim, H.-M. An, and T. G. Kim, Improved reliability of Au/S3N4/Ti resistive switching memory cells due to a hydrogen postannealing treatment, Journal of Applied Physics, vol. 109, p. 016105, 2011.
[27]P. Chakraborty, S. S. Mahato, T. K. Maiti, M. K. Bera, C. Mahata, S. K. Samanta, A. Biswas, and C. K. Maiti, Performance improvement of flash memory using AlN as charge-trapping Layer, Microelectronic Engineering, vol. 86, pp. 299-302, 2009.
[28]C. Zuo, N. Sinha, and G. Piazza, Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators, Sensors and Actuators A: Physical, vol. 160, pp. 132-140, 2010.
[29]X. Song, R. Fu, and H. He, Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering, Microelectronic Engineering, vol. 86, pp. 2217-2221, 2009.
[30]K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, Resistive Switching in Pt/AlO/TiO/Ru Stacked Structures, Electrochemical and Solid-State Letters, vol. 9, p. G343, 2006.
[31]B. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh, H. Kim, C. Hwang, K. Szot, and R. Waser, Resistive switching mechanism of TiO thin films grown by atomic-layer deposition, Journal of Applied Physics, vol. 98, p. 033715, 2005.
[32]K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Localized Metallic Conductivity and Self-Healing during Thermal Reduction of SrTiO3, Physical Review Letters, vol. 88, p. 75508, 2002.
[33]G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, Observation of electric-field induced Ni filament channels in polycrystalline NiOx film, Applied Physics Letters, vol. 91, pp. 222103-222103-3, 2007.
[34]K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, Resistive Switching in Pt/AlO/TiO/Ru Stacked Structures, Electrochemical and Solid-State Letters, vol. 9, p. G343, 2006.
[35]K. M. Kim, B. J. Choi, D. S. Jeong, C. S. Hwang, and S. Han, Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes, Applied Physics Letters, vol. 89, pp. 162912-162912-3, 2006.
[36]K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films, Applied Physics Letters, vol. 91, p. 012907, 2007.
[37]K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide, Applied Physics Letters, vol. 89, p. 103509, 2006.
[38]A. Sawa, Resistive switching in transition metal oxides, Materials Today, vol. 11, pp. 28-36, 2008.
[39]R. Waser, T. Baiatu, and K. H. Härdtl, dc Electrical Degradation of Perovskite‐Type Titanates: I, Ceramics, Journal of the American Ceramic Society, vol. 73, pp. 1645-1653, 1990.
[40]A. Beck, J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications, Applied Physics Letters, vol. 77, p. 139, 2000.
[41]K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nature materials, vol. 5, pp. 312-320, 2006.
[42]T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, Nanometer-scale switches using copper sulfide, Applied Physics Letters, vol. 82, p. 3032, 2003.
[43]Y. S. Park, S. Y. Lee, S. M. Yoon, S. W. Jung, B. G. Yu, S. J. Lee, and S. G. Yoon, Nonvolatile programmable metallization cell memory switching element based on Ag-doped SbTe solid electrolyte, Applied Physics Letters, vol. 91, pp. 162107-162107-3, 2007.
[44]M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte, Nanotechnology, IEEE Transactions on, vol. 5, pp. 535-544, 2006.
[45]劉子正, 氧化鋅薄膜之雙極性電阻轉換特性研究, 2008.
[46]D. Lee, D. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, Resistance switching of copper doped MoOx films for nonvolatile memory applications, Applied Physics Letters, vol. 90, pp. 122104-122104-3, 2007.
[47]H. Guo, B. Yang, L. Chen, Y. Xia, K. Yin, Z. Liu, and J. Yin, Resistive switching devices based on nanocrystalline solid electrolyte (AgI)(AgPO), Applied Physics Letters, vol. 91, p. 243513, 2007.
[48]Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application, Nano letters, vol. 9, pp. 1636-1643, 2009.
[49]M. Pyun, H. Choi, J. B. Park, D. Lee, M. Hasan, R. Dong, S. J. Jung, J. Lee, D. Seong, and J. Yoon, Electrical and reliability characteristics of copper-doped carbon (CuC) based resistive switching devices for nonvolatile memory applications, Applied Physics Letters, vol. 93, p. 212907, 2008.
[50]X. Guo, C. Schindler, S. Menzel, and R. Waser, Understanding the switching-off mechanism in Ag migration based resistively switching model systems, Applied Physics Letters, vol. 91, p. 133513, 2007.
[51]S. M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008.
[52]S. Ohmi, G. Yamanaka, and T. Sakai, Characterization of AlON thin films formed by ECR plasma oxidation of AlN/Si (100), IEICE transactions on electronics, vol. 87, pp. 24-29, 2004.
[53]A. Mahmood, R. Machorro, S. Muhl, J. Heiras, F. Castillon, M. Farı́as, and E. Andrade, Optical and surface analysis of DC-reactive sputtered AlN films, Diamond and Related Materials, vol. 12, pp. 1315-1321, 2003.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top