跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宜庭
研究生(外文):Yi-TingTsai
論文名稱:以化學氣相沉積法製備石墨烯薄膜
論文名稱(外文):Fabrication of graphene films by chemical vapor deposition
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hiung Hon
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米科技暨微系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:石墨烯化學氣相沉積透明導電膜
外文關鍵詞:graphenechemical vapor depositiontransparent conductive film.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:417
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2010年諾貝爾物理獎揭曉,英國曼徹斯特大學的Andre Geim和Konstantin Novoselov等人因為石墨烯的開創性實驗而獲獎。石墨烯擁有極優異的光學、電學、力學和熱學性能特性,原料相對取得容易,未來可望有機會取代Indium-Tin-Oxide(ITO)。
本研究以0.025mm厚的銅箔當做基板,利用甲烷(CH4)當做反應氣體,以化學氣相沉積(chemical vapor deposition)的方式來成長石墨烯(graphene)薄膜,藉由改變成長時間、成長溫度、成長壓力和成長時的氫氣流量等參數來探討製程和薄膜品質的關係,並找出接近單層且品質佳的石墨烯薄膜成長參數,而在最後拉曼分析結果呈現也顯示是趨近於單層並且品質好的石墨烯薄膜;本研究也試著用不鏽鋼基板來成長,最後在透明導電膜的應用方面,就將成長好的石墨烯薄膜轉移到PDMS(polydimethylsiloxane)基板上並測量其穿透度和片電阻,最佳值穿透度為96.1%、片電阻為2.848X104 Ohm/sq。

Graphene, a newly isolated form of carbon, provides a rich level fundamental physics and practical applications. It was first founded in 2004, and then there were two recipients for the Nobel Prize in Physics in the year 2010; Andre Geim and Konstantin Novoselov. They received the award for their groundbreaking experiments regarding the two-dimensional material graphene, which is widely heralded to be the next big thing after plastic. Amazingly, only six years, graphene has led to a deluge of international research interest.
In this work, we use 0.025mm thick copper as the substrate and methane as reactant gas to fabricate high quality graphene. And we try to modify the growth time, temperature, pressure and hydrogen flow rate during the growth stage, in order to find the moderate parameter for the perfect single-layer graphene growth. Moreover, stainless steel foils was also used as the substrate for the graphene growth.
For the transparent conductive films, we use the as-grown graphene films and transfer it to the PDMS(polydimethylsiloxane) substrate, and it’s found to absorb 3.5% of incident white light, the best transmittance was 96.1%. The sheet resistance was 2.848X104 Ohm/sq.

中文摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
第二章 理論基礎與文獻回顧 5
2-1 石墨烯的製備方法 7
2-1-1 機械剝離法 7
2-1-2 碳化矽(SiC)熱裂解法 8
2-1-3 氧化還原法 10
2-1-4 超音波震盪法 13
2-1-5 有機合成法 14
2-2 化學氣相沉積法(Chemical vapor deposition, CVD)成長石墨烯 16
2-2-1 石墨烯在過鍍金屬上的成長 16
2-2-2 石墨烯在鎳和銅上的成長 17
2-2-3 石墨烯在鎳的成長機制 19
2-2-4 石墨烯在銅的成長機制 24
2-3 石墨烯在透明導電膜的應用 29
第三章 實驗方法與步驟 32
3-1 實驗流程 32
3-1-1 利用化學氣相沉積法製備石墨烯薄膜 33
3-1-2 製作石墨烯透明導電膜 34
3-2 實驗系統設計 35
3-2-1 熱裂解化學氣相沉積系統 35
3-2-2 反應氣體輸入裝置 35
3-2-3 反應器 35
3-2-4 加溫及溫控系統 36
3-2-5 真空及排氣系統 36
3-3 實驗材料及藥品 39
3-3-1 基板材料 39
3-3-2 清洗溶劑、實驗藥品及實驗氣體 39
3-4實驗步驟 40
3-4-1 製備石墨烯的實驗步驟 40
3-4-2石墨烯透明導電膜的製作 41
3-5實驗分析與鑑定 42
第四章 結果與討論 52
4-1前言 52
4-2 成長石墨烯的前處理 53
4-3 氫氣流量的影響 59
4-4 壓力效應 62
4-5 溫度效應 64
4-6 成長時間效應 67
4-7 在不鏽鋼(stainless steel)上成長石墨烯 73
4-8 石墨烯透明導電膜 79
4-9 結論 85
第五章 文獻參考 87



1.Kim, A.K.G.a.P., Carbon Wonderland. Scientific American 2008. 298: p. 90-97.
2.Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
3.Alexander A. Balandin, S.G., Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008. 8(3): p. 902-907
4.Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
5.Berger, C., et al., Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
6.Anton, N.S., et al., Electrostatic deposition of graphene. Nanotechnology, 2007. 18(13): p. 135301.
7.Hirata, M., et al., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon, 2004. 42(14): p. 2929-2937.
8.Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155-158.
9.Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008. 3(2): p. 101-105.
10.Brodie, B.C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 1859. 149(ArticleType: research-article / Full publication date: 1859 /): p. 249-259.
11.Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
12.Xu, Y., et al., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008. 130(18): p. 5856-5857.
13.He, H., et al., A new structural model for graphite oxide. Chemical Physics Letters, 1998. 287(1–2): p. 53-56.
14.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-1024.
15.Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
16.Yang, X., et al., Two-Dimensional Graphene Nanoribbons. Journal of the American Chemical Society, 2008. 130(13): p. 4216-4217.
17.Cecilia Mattevi, a.H.K.a.M.C.a., A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21: p. 3324-3334.
18.Kim KS, Z.Y., Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
19.Kwon, S.-Y., et al., Growth of Semiconducting Graphene on Palladium. nano letters, 2009. 9(12): p. 3985-3990.
20.Sutter, P.W., J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nat Mater, 2008. 7(5): p. 406-411.
21.Coraux, J., et al., Structural Coherency of Graphene on Ir(111). nano letters, 2008. 8(2): p. 565-570.
22.Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
23.Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10): p. 2017-2021.
24.Yi Zhang, et al., Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition. The Journal of Physical Chemistry Letters 2010 1(20): p. 3101-3107
25.Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103-3.
26.Srivastava, A., et al., Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials, 2010. 22(11): p. 3457-3461.
27.Levendorf, M.P., et al., Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. nano letters, 2009. 9(12): p. 4479-4483.
28.Cai, W., et al., Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 2009. 95(12): p. 123115-3.
29.Lee, Y., et al., Wafer-Scale Synthesis and Transfer of Graphene Films. nano letters, 2010. 10(2): p. 490-493.
30.Lee, Y.-H. and J.-H. Lee, Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO[sub 2]/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 2010. 96(8): p. 083101-3.
31.Ismach, A., et al., Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. nano letters, 2010. 10(5): p. 1542-1548.
32.Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 2010. 5(8): p. 574-578.
33.Li, X., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. nano letters, 2009. 9(12): p. 4268-4272.
34.Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. nano letters, 2008. 9(1): p. 30-35.
35.Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
36.Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
37.Gao, L., et al., Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters, 2010. 97(18): p. 183109-3.
38.Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
39.Chen, J.-H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano, 2008. 3(4): p. 206-209.



電子全文 電子全文(網際網路公開日期:20221231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊