跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳榮裕
研究生(外文):Rong-Yu Chen
論文名稱:在LTE-Advanced架構下支援移動中繼的效能評估
論文名稱(外文):Performance Evaluation for LTE-Advanced Architectures Supporting Mobile Relay
指導教授:楊峻權
指導教授(外文):Chun-Chuan Yang
口試委員:張英超麥毅廷陳振庸
口試日期:2012-07-18
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:LTEeNBLTE-AdvancedMobile RN換手HSRPMIP
外文關鍵詞:LTEeNBLTE-AdvancedMobile RNHandoverHSRPMIP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
LTE為長期演進技術(Long Term Evolution)的簡稱,是3GPP所制定的一個標準。而3GPP乃是由行動通訊業者所組成的國際組織,故在制定新的標準之後較易為行動通訊業者所採納。且LTE在設計之初希望透過現有十分常見且便利的Internet做結合,並以All IP 的分封交換網路(Packet-Switched Networks)型態來提供相關服務。在LTE架構下,定義使用者設備(User Equipment)如何透過LTE基地台(E-UTRAN NodeB, eNB)與LTE核心網路(Evolved Packet Core, EPC)進行通訊。首先,我們考慮eNB無線訊號覆蓋範圍可能會因建築物之遮蔽,而導致訊號強度不足等問題;便在LTE-Advanced架構中,制定了低耗電、低成本的中繼節點(Relay Node, RN)來解決訊號因建築物遮蔽所產生的問題。而此時RN連接到的eNB我們稱之為Donor eNB (DeNB)。最後,LTE- Advanced使用RN的好處除了可以擴展eNB服務範圍外還能提供cell edge用戶較高的訊號品質。
本文一開始便針對RN設計原則作介紹。首先,RN設計概念依功能區分為架構A及架構B兩種;在架構A下的RN其功能涵蓋至Layer 3,除了可以自己發送控制訊號外還擁有自己專屬的cell ID。對於UE而言,它就好像是一個全新的eNB。一方面對於eNB而言,需扮演UE的角色;一方面對於UE而言,則需扮演eNB角色。考慮此時RN對於EPC而言宛如一般的UE,便針對RN制定RN的MME與P/S-GW以對RN作管理。且又因RN P/S-GW設計位置之不同,在架構A中又分出三種方案來作探討。而架構B的RN功能只涵蓋至Layer 2,除了不具備自己的控制訊號外,主要目標為協助和加強eNB之訊號。
經過多次3GPP會議討論結果,終於在LTE-Advanced R10版本中確定採用Alternative 2 (Alt_2)架構的RN來設計。只是在接下來的議題中,如果將RN佈建於高鐵(High Speed Rail, HSR)車廂上來服務高鐵乘客的話;考慮RN將隨車廂移動而具備移動性質的話,此時RN勢必將透過對DeNB重新連結及進行換手機制,因此我們也將此環境下之RN改稱MRN (Mobile RN)。本文便針對MRN (Mobile RN)換手後所產生的問題制定其解決方法(Alt_2+PMIP)。並與Alt_1、Alt_2及Alt_2+Dual MRN進行定性與定量分析的比較。最後,結果顯示我們所提出的Alt_2+PMIP方案,不僅擁有較佳的換手延遲時間且不會因使用者個數影響資料的平均傳輸延遲時間。
Long Term Evolution is one of 3rd Generation Partnership Project (3GPP) standards defined by 3GPP, which is an international organization composed of the mobile communications industries. Moreover, it’s easier to accommodate when mobile operators developed new standards. 3GPP has defined the communication procedure of LTE-UEs to E-UTRAN NodeB (eNB) and Evolved Packet Core (EPC) in the LTE structure. Considering the weakness of eNB’s wireless signal coverage in urban area, improvement of the signal guality is a very important issue. Therefore, in order to solve the problem of signal attenuation, new entity called relay node (RN) introduced in LTE-Advanced which has low-power and low-cost features. An eNB that can support both RN and UE’s connection is called Donor eNB (DeNB). So RN can extend the signal coverage of eNB and provide better signal quality for users on the cell edge.
Designing principles of RN will be introduced in the beginning of this thesis. First of all, according to the functionality, there are two kinds of RN architecture, which are Architecture A and Architecture B. RN can send control signals and get its dedicated cell ID in Architecture A. RN is a regular eNB to support radio connection service for UEs. On the one hand, RN also plays a role of UE to the eNBs. The final decision of the fixed RN architecture alternatives is Alt¬_2 on the Rel-10 standard. Based on the Rel-10 standard, Alt_2 RN has problems of S/P-GW re-location and IP re-allocation when RN mobility as MRN architecture into Rel-11. Considering those Alt_2’s problems, the S/P-GW of the mobile relay is not changed during mobile relay handover, there are several architectures which are developed in 3GPP forum. Comparison of qualitative and quantitative analysis for Alt_1, Alt_2, Alt_2+PMIP and Alt_2+Dual MRN architectures is also discussed in this thesis. Finally, the performance results have shown that our proposed Alt_2+PMIP architecture has less handoff delay, and transmission delay.
誌謝 I
論文摘要 II
Abstract IV
目錄 V
圖目錄 VII
表目錄 X
Chapter 1 簡介 1
1.1 前言 1
1.2 研究動機與目標 1
1.3 章節編排 2
Chapter 2 技術標準介紹與文獻探討 3
2.1 Long Term Evolution 3
2.1.1 LTE網路結構簡介 3
2.1.2 Protocol Architecture 7
2.1.3 UE初始連接LTE網路程序 10
2.1.4 LTE換手程序 11
2.2 LTE-Advanced 14
2.2.1 LTE-Advanced 14
2.2.2 Architecture A 17
2.2.3 Architecture B 30
2.2.4 RN初始連接LTE-Advanced網路程序 37
2.2.5 UE封包的路由過程 40
2.3 LTE-Advanced with Mobile Relay Issue 41
2.3.1 Mobile Relay 41
2.3.2 RN Handover Procedure 43
2.4 Proxy Mobile IP 45
2.4.1 Proxy Mobile IP 45
Chapter 3針對不同移動中繼方案換手程序的效能評估 50
3.1 不同移動中繼方案的架構 50
3.1.1 Alternative 1 52
3.1.2 Alternative 2 53
3.1.3 Alternative 2+Proxy Mobile IP 55
3.1.4 Alternative 2+Dual MRN 58
3.2 Handover Latency 60
3.2.1 Alternative 1換手程序 61
3.2.2 Alternative 2換手程序 63
3.2.3 Alternative 2+Proxy Mobile IP 換手程序 65
3.2.4 Alternative 2+Dual MRN 換手程序 67
3.3 Number of Signals during HO 70
3.4 User Plane Transmission Delay in LTE 71
3.4.1 User plane transmission delay without HO 72
3.4.2 User plane transmission delay during HO 74
3.4.3 Average user plane transmission delay 75
Chapter 4 Numerical Results 76
4.1 模擬環境 76
4.2 定性分析 77
4.2.1 效能參數 77
4.2.2 效能比較 79
4.3 定量分析 82
4.3.1 效能參數 82
4.3.2 效能分析 83
Chapter 5結論與未來研究 88
Reference 90
[1] S. Sesia, I. Toufik, and M. P. J. Baker, LTE – The UMTS Long Term Evolution: From Theory to Practice, Wiley, Apr. 2009.
[2] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” Rel. 10, v10.3.0, Mar. 2011.
[3] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN),” Rel. 8, v8.5.0, May 2008.
[4] 3GPP TS 36.413, “Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP),” Rel. 10, v10.1.0, Mar. 2011.
[5] 3GPP TS 29.281, “General Packet Radio Service (GPRS); Tunnelling Protocol User Plane (GTPv1-U),” Rel. 10, v10.1.0, Mar. 2011.
[6] 3GPP TS 23.401, “System Aspects; GPRS enhancements for E-UTRAN access,” Rel. 11, v11.1.0, Mar. 2012.
[7] Z. Ma, Y. Zhang, K. Zheng, W. Wang, and M. Wu, “Performance of 3GPP LTE-Advanced Networks with Type I Relay Nodes,” in Proceedings of the 2010 5th International ICST Conference on Communications and Networking in China (CHINACOM), pp. 1-5, Aug. 2010.
[8] O. Teyeb, F. Frederiksen, V.V. Phan, and B. Raaf, “User Multiplexing in Relay Enhanced LTE-Advanced Networks,” in Proceedings of IEEE 2010 71st Vehicular Technology Conference (VTC), pp. 1-5, May 2010.
[9] 3GPP TR 36.806, “Evolved Universal Terrestrial Radio Access (E-UTRA) Relay architectures for E-UTRA (LTE-Advanced),” Rel. 9, v9.0.0, Mar. 2010.
[10] 3GPP TS 23.203, “Technical Specification Group Services and System Aspects; Policy and charging control architecture,” Rel. 11, v11.1.0, Mar. 2011.
[11] J. Liu, C. Hu, Z. Ma, K. Zheng, and W. Wang, “Semi-persistent scheduling for VoIP service in the LTE-Advanced relaying networks,” in Proceedings of the 2010 International Conference on Communications, Circuits and Systems (ICCCAS), pp. 54-58, July 2010.
[12] 3GPP TR 36.836, “Mobile Relay for E-UTRA,” Rel. 11, V1.0.0, May 2012.
[13] C. Perkins, “IP Mobility Support for IPv4,” RFC 3344, Aug. 2002.
[14] D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” RFC 3775, June 2004.
[15] S. Gundavelli, Ed., K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, “Proxy Mobile IPv6,” RFC 5213, Aug. 2008.
[16] 3GPP TS 29.275, “Technical Specification Group Core Network and Terminals; Proxy Mobile IPv6 (PMIPv6) based Mobility and Tunnelling protocols,” Rel. 11, v11.2.0, Mar. 2012.
[17] CATT, "Text proposal on mobile relay architecture," 3GPP TSG RAN WG3 Meeting #75 R3-120105, Feb. 2012.
[18] Qualcomm Incorporated, "Impact of mobility support for the candidate mobile relay architectures," 3GPP TSG RAN WG3 Meeting #75 R3-120296, Feb. 2012.
[19] Alcatel-Lucent, "Choice of Architecture for support of Mobile Relays," 3GPP TSG RAN WG3 Meeting #75 R3-120258, Feb. 2012.
[20] Nippon Electric Company (NEC), "Mobile Relay architecture," 3GPP TSG RAN WG3 Meeting #75 R3-120186, Feb. 2012.
[21] Nokia Siemens Networks (NSN), "Mobile relay based on Rel-10 and Alt-1," 3GPP TSG RAN WG3 Meeting #75 R3-120140, Feb. 2012.
[22] Institute for Information Industry (III), "Performance Analysis for Candidate Architectures Supporting Mobile Relay," 3GPP TSG RAN WG3 Meeting #75 R3-120233, Feb. 2012.
[23] Huawei Technologies, "Mobile Relay Solution by reusing Rel-10 Relay," 3GPP TSG RAN WG3 Meeting #75 R3-120079, Feb. 2012.
[24] Huawei Technologies, "Dual-Mobile Relay Solution Based on Alt-2 RN Architecture," 3GPP TSG RAN WG3 Meeting #75bis R3-120538, Mar. 2012.
[25] Huawei Technologies, "Further considerations on mobility support for eAlt_2-1 Mobile Relay," 3GPP TSG RAN WG3 Meeting #76 R3-121145, May. 2012.
[26] X. Huang, F. Ulupinar, P. Agashe, D. Ho, and G. Bao, “LTE Relay Architecture and Its Upper Layer Solutions,” in Proceedings of the 2010 Global Telecommunications Conference (GLOBECOM), pp. 1-6, Dec. 2010.
[27] Ericsson, and NTT DOCOMO, INC., "Delay analysis for idle to active transition," 3GPP TSG RAN WG2 Meeting #59bis R2-074084, Oct. 2007.
[28] Fujitsu, "Architecture Options Comparison: UE Mobility Support," 3GPP TSG RAN WG3 Meeting #66bis R3-100046, Jan. 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊