跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張璟寧
研究生(外文):Jing, Ning Chang
論文名稱:24GHz與60GHz CMOS 功率放大器之設計與實現
論文名稱(外文):Design And Implementation Of 24GHz And 60GHz CMOS Power Amplifiers
指導教授:林佑昇林佑昇引用關係
指導教授(外文):Lin, Yo Sheng
口試委員:孫台平林佑昇梁效彬
口試委員(外文):Sun, Tai PingLin, Yo ShengLiang, Hsiao Bin
口試日期:2012-07-23
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:83
中文關鍵詞:功率放大器功率附加效率輸出飽和功率K頻帶V頻帶疊接Wilkinson 功率分配器共源級功率等分發射機
外文關鍵詞:power amplifier (PA)power added efficiency (PAE)saturation output power(Psat)K-bandV-bandcascodeWilkinson power divider/combinercommon source (CS)power spitting/combiningtransmitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本論文以高功率附加效率之功率放大器為研究目標。我們設計與實作了兩顆應用在不同頻段的功率放大器。研究主題主要分成兩部分:
第一部分,我們利用0.18μm CMOS製程設計並實現了一顆應用在K頻帶之高功率附加效率的功率放大器。在電路架構方面,前兩級我們以基本的疊接架構來實現,可以消除米勒效應,改善反向隔離度。最後一級則是採用了Wilkinson功率分配器架構以達到輸出功率以及功率附加效率的提升。量測結果顯示此電路操作在23~26.5GHz時,增益(S21) 為22± 1.014dB,飽和輸出功率(Psat)為15.92dBm,最大功率附加效率(PAE)為14.46%,而電路整體消耗之功率為163.8mW,且不含test pads之晶片面積為0.687 mm2。依照量測結果可以得知此電路有著不錯的特性並且適合應用於K頻帶的發射機系統。
第二部分是一個以90奈米製程實現的應用在V頻帶的高功率附加效率之功率放大器。此電路架構分成三級,前兩級以基本的共源級(CS)架構來實現,主要是考慮到此架構有較佳的線性度以及功耗較低的特性。而最後一級我們則是使用功率等分(power splitting/combining)的架構來實現,主要目的是為了要達成高輸出功率以及高功率附加效率。而與第一部分的Wilkinson功率分配器架構不同的地方是此架構可以不需要額外的電阻以減少晶片面積並且較容易完成電路級間匹配,不過在電路穩定以及對稱上則是不如Wilkinson功率分配器的架構。量測結果顯示此電路的3-dB頻寬為13GHz(52~65GHz),增益(S21) 為11.742± 1.49dB,飽和輸出功率(Psat)為11.37dBm,最大功率附加效率(PAE)為15.81%,而電路整體消耗之功率為44.4mW,且不含test pads之晶片面積則是0.398 mm2。本電路在最大功率附加效率(PAE)以及整體消耗功率上有突出的表現,而整體的特性與歷年文獻比較亦有不錯的表現。此電路非常適合整合於V頻帶的發射機系統中。
The purpose of this thesis is to research high added efficiency (PAE) power amplifier. We design and implement two power amplifiers, which apply for different frequency bands. The thesis con be divided into two parts:
The first part is on the design and implement of a high added efficiency power amplifier for K-band applications in 0.18μm CMOS technology. In this circuit, we used the cascade-stage structure as first two stages to eliminate the Miller effect and improve the reverse isolation. In the cause of improving the output power and power added efficiency, we use the Wilkinson power divider/combiner to implement final stage. The measured results show that this circuit operating on 23~26.5GHz, the gain (S21) is 22± 1.014dB, saturation output power (Psat) is 15.92dBm, max power added efficiency (peak PAE) is 14.46%, total power consumption is 163.8mW and the chip area (excluding test pads) is 0.687mm2. These results indicate that this circuit performs well and is suitable for K-band transmitter systems.
The second part is on the design and implement of a high added efficiency power amplifier for V-band applications in 90nm CMOS process. This circuit could be divided into three stages. The first two stages are implemented with single device common-source topology, which have better linearity and lower power consumption. In order to achieve the higher output power and higher power added efficiency, the technique of power splitting/combining is used in final stage. Not like the Wilkinson power divider/combiner in the first part. This structure need not have added resistors. So the chip area could be saved and it is easy to achieve inter-stage matching. But in stability and symmetry of structure, this power splitting/combining structure is worse than Wilkinson power divider/combiner. The measured results show that 3-dB bandwidth of this power amplifier is 13GHz (52~65GHz), gain (S21) is 11.742± 1.49dB, saturation output power (Psat) is 11.37dBm, max power added efficiency (peak PAE) is 15.81%, total power consumption is 44.4mW and the chip area (excluding test pads) is 0.398mm2. This circuit performs well in power added efficiency (PAE) and total power consumption. Compared with other conference papers, this circuit still has good performance. This power amplifier is very ideal for V-band transmitter systems.
Contents…………………………………...………………………..i
List of Figures…………………………...……………………..v
List of Tables……………………………….……………………ix

Chapter 1 Introduction…..…………………………………....1
1.1 Motivation………………………………………………………………...1
1.2 What Is Power Amplifier? …………..………………………....................2
1.3 Thesis Organization………………………………………….....................4

Chapter 2 Basic Theories of Power Amplifier………………..6
2.1 Power Amplifier Classification…………………………………………...6
2.1.1 Class A, B, AB and C Power Amplifiers……………………………8
2.1.1.1 Class A……………………………………………………...8
2.1.1.2 Class B……………………………………………………...9
2.1.1.3 Class AB………….………………………………………..12
2.1.1.4 Class C…………………………………………………….13
2.1.2 Class D, E, F Power Amplifiers…………………………………...16
2.1.2.1 Class D……………………………………………………16
2.1.2.2 Class E…………………………………………………….17
2.1.2.3 Class F…………………………………………………….19
2.2 Power Amplifier Parameter Definitions………………………................20
2.2.1 Scattering Parameters……………………………………………...20
2.2.2 Stability…………………………………………………………….21
2.2.3 Power Gain………………………………………………………...23
2.2.3.1 Transducer power gain (GT): ……………………………..23
2.2.3.2 Operating power gain (GP): ………………………………24
2.2.3.3 Available power gain (GA): ………………………………24
2.2.3.4 The mixed power gain…………………………………….24
2.2.4 Output power and 1dB gain compression point (P1dB)………...…25
2.2.5 Saturated power (Psat)……………………………………………...26
2.2.6 Dynamic range (DR)………………………….………………...…26
2.2.7 3rd-order intercept point (IP3)…………………..………………...26
2.2.8 Power Efficiency…………………………………………………..29
2.2.8.1 Drain efficiency (ηd):……………………………………29
2.2.8.2 Power added efficiency (ηPAE):………………………….30
2.2.8.3 Total efficiency (ηT) :……………………………….......30
2.3 Design Procedure and Consideration…………………………………....31

Chapter 3 The High PAE Power Amplifier for K-band
Applications in 0.18μm CMOS Technology………....……….....34
3.1 Introduction……………………………………………………………...34
3.2 Circuit Design……………………………………………………………36
3.2.1 Wilkinson Power Divider/Combiner………………………………39
3.3 Results and Discussion………………………………………………......40
3.3.1 Simulation Results of Wilkinson Power Divider/Combiner………40
3.3.2 Simulation and Measurement Results of Power Amplifier………..46
3.4 Conclusion……………………………………………………………….55

Chapter 4 A High PAE Power Amplifier for V-band Applications in 90nm CMOS Technology……….……………...56
4.1 Introduction……………………………………………………………...56
4.2 Circuit Design……………………………………………………………59
4.3 Results and Discussion…………………………………..………………62
4.3.1Simulation Results of Power Divider/Combiner………62
4.3.2 Simulation and Measurement Results of Power Amplifier………..64
4.4 Conclusion……….………………………………………………………72

Chapter 5 Conclusion and Future Works…...………………73
5.1 Conclusion……………………………………………………………….73
5.2 Future Works…………………………………………………………...74

References………………………………………………………...75
Appendix………………………………………………………….78
Vita………………………………………………………………..83

[1] CIC訓練課程(C604), “Power Amplifier Design and Simulation using ADS:
Training Manual”, pp.54, July-2010
[2] Behzad Razavi, RF microelectronics. Prentice Hall PTR, 1998
[3] 陳科后(2004).The Design and Implementation of Power Amplifier, Low Noise Amplifier and Wideband Amplifier. Unpublished master dissertation, National Chi-Nan
University, Taiwan.
[4] Patrick Reynaert and Michiel Steyaert, RF Power Amplifiers For Mobile Communications. Springer, 2006
[5] 劉沂娟(2003).A 2.4GHz CMOS RF Power Amplifier with Linear Compensation. Unpublished master dissertation, National Chiao Tung University, Taiwan
[6] N.O. Sokal, and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE Journal of Solid-State Circuit, vol. 10, pp. 168-176, June 1975
[7] 林佑昇,邱弘緯,梁效彬 編著(2011): RFID 晶片設計。新北市:高立。
[8] 康竣傑(2010). Design of High Linearity Power Amplifiers. Unpublished master dissertation, National Dong Hwa University, Taiwan
[9] 張佑誠(2003). Design of Wideband Power Amplifier with Gain Control. Unpublished master dissertation, Feng Chia University, Taiwan
[10] Chi Y Law, Anh-Vu Pham, “A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 426-427, February 2010
[11] Chi-Cheng Hung, Jing-Lin Kuo, Kun-You Lin and Huei Wang, ” A 22.5-dB gain, 20.1-dBm output power K-band power amplifier in 0.18-µm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 557-560, May 2010
[12] 張錦法(2011).Analysis and Design of Low-Power CMOS Distributed Low-Noise Amplifiers and Low-Insertion-Loss CMOS Bandpass Filters. Unpublished doctoral dissertation, National Chi-Nan University, Taiwan
[13] R. G. Freitag, “A unified analysis of MMIC power amplifier stability, ” IEEE MTT-S
International Microwave Symposium Digest, vol.1, pp.297-300, June 1992
[14] Wilkinson, E.J. , “An N-Way Hybrid Power Divider,” Microwave Theory and Techniques, IRE Transactions on Volume:8, Issue:1 , Page(s): 116–118, January 1960.
[15] Tron Torgersen (2009), Wilkinson Power Divider: A Miniaturized MMIC Lumped Component Equivalent. doctoral dissertation, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, Norway.
[16] Nai-Chung Kuo, Jui-Chi Kao, Che-Chung Kuo and Huei Wang, “K-band CMOS Power amplifier with adaptive bias for enhancement in back-off efficiency,” Microwave Symposium Digest (MTT), IEEE MTT-S, pp. 1-4, June 2011
[17] Huang, Pin-Cheng, Jing-Lin Kuo, Tsai, Zuo-Min, Lin, Kun-You and Wang, Huei, “A
22-dBm 24-GHz power amplifier using 0.18-µm CMOS technology,” Microwave Symposium Digest (MTT), IEEE MTT-S, pp. 248-251, May 2010
[18] Jing-Lin Kuo, Zuo-Min Tsai and Huei Wang, “A 19.1-dBm Fully-Integrated 24 GHz Power Amplifier Using 0.18-μm CMOS Technology,” Microwave Integrated Circuit Conference, EuMIC, pp.558-561, October 2008
[19] Dawn, D., Sarkar, S., Sen, P., Perumana, B., Leung, M., Mallavarpu, N., Pinel, S. and Laskar, J., “60GHz CMOS Power Amplifier with 20-dB-Gain and 12dBm Psat”, IEEE MTT-S International, pp.537-540, June 2009
[20] Chowdhury, D., Reynaert, P., Niknejad, A.M., “A 60GHz 1V + 12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS”, IEEE Solid-State Circuits Conference, ISSCC, pp 560-635, February 2008
[21] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, “TX and RX Front-Ends for 60 GHz Band in 90 nm Standard Bulk CMOS, ” IEEE Solid-State Circuits Conf , ISSCC, pp. 558-635, February 2008
[22] B. Martineau, V. Knopik, A. Siligaris, F. Gianesello, and D. Belot, “A 53-to-68GHz 18dBm Power Amplifier with an 8-Way Combiner in Standard 65nm CMOS,” Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE international, pp.428-429, February 2010
[23] Wei-Heng Lin, Yung-Nien Jen, Jeng-Han Tsai, Hsin-Chia Lu and Tian-Wei Huang, “V-band Fully-Integrated CMOS LNA and DAT PA for 60 GHz WPAN Applications,” Microwave Conference (EuMC), pp.284-287, 2010
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊