跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇美心
研究生(外文):Mei-Sin Su
論文名稱:TLR2基因剔除小鼠對於運動表現之影響
論文名稱(外文):Effects of Toll-Like Receptor 2 on Exercise Performance in Mice Model
指導教授:黃啟彰黃啟彰引用關係許美智許美智引用關係
指導教授(外文):Chi-Chang HuangMei-Chich Hsu
學位類別:碩士
校院名稱:國立體育大學
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:類鐸受體-2運動表現前肢抓力測試力竭運動口服葡萄糖耐受試驗
外文關鍵詞:Toll-like receptor-2exercise performanceforelimb grip strengthen testexhaustive exerciseoral glucose tolerance test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
TLRs具有調節免疫,參與能量代謝、控制細胞呼吸以及提高骨骼肌粒線體生合成等作用。然而過去未曾有任何文獻指出TLR2與運動耐力表現之間的關係,故本研究透過野生型及TLR2全基因剔除小鼠模式來探討TLR2在運動表現方面所扮演的角色。本實驗採用C57BL/6J小鼠與TLR2基因剔除品系之小鼠,分為四組:(1)對照老化組(WT-S);(2)對照成年組(WT-A);(3) TLR-2剔除老化組(KO-S);(4) TLR-2剔除成年組(KO-A)。針對前肢抓力測試、力竭運動表現、口服葡萄糖耐受試驗(OGTT)藉以瞭解葡萄糖利用情形進行分析。前肢抓力之運動表現結果,KO-S顯著低於WT-S,KO-A顯著低於WT-A,而TLR2基因剔除則顯著低於WT。單次負重游泳力竭之耐力表現測試結果,KO-A顯著低於WT-A,而TLR2基因剔除則顯著低於WT。口服葡萄糖耐受試驗之曲線下面積結果為KO-S顯著低於WT-S、TLR2基因剔除顯著低於WT。我們發現當小鼠缺乏TLR2 基因時,雖有較佳的胰島素敏感度,但會導致副睪脂肪囤積增加並降低對脂質的利用,進而引發全身系統性代謝與生理上的影響,最後導致運動表現不佳的情形發生。
TLRs have been demonstrated to regulate the immune system, energy metabolism, cellular respiration and increase to mitochondrial biogenesis in skeletal muscle. However, there is no literature reported on the relationship between TLR2 and exercise performance. The purpose of this study was to examine the effect of TLR2 on exercise performance by using the TLR2 knockout mouse model. In this study, wild-type (WT) and TLR2 konckout (KO) mice of the C57BL/6J genetic background were be used and divided into four groups: (1) wild-type and senescence (WT-S); (2) wild-type and adult (WT-A); (3) TLR-2 knockout and senescence (KO-S); (4) TLR-2 knockout and adult (KO-A). The forelimb grip strength, an exhaustive swimming exercise, and oral glucose tolerance test (OGTT) of all animals were be analyzed. The results showed that forelimb grip strength in group KO-S was significantly lower than group WT-S, KO-A group was significantly lower than WT-A group, and TLR2 knockout mice was significantly lower than the WT mice. The exhaustive swimming time of group KO-A significantly lower than that of group WT-A, and TLR2 knockout is significantly lower than the WT. The area under the curve of OGTT result of group KO-S was significantly lowered than group WT-S, and TLR2 knockout mice significantly lower than the WT mice. In the present study, we found that TLR2 knockout mice have better insulin sensitivity, but the visceral fat accumulation is also higher than the control mice. In conclusion, TLR2 play an important role in the balance of glucose and fat metabolism, and contribute to exercise performance.
目 錄

中文摘要…………………………………………………………………………Ⅰ
英文摘要…………………………………………………………………………Ⅱ
圖目錄……………………………………………………………………………Ⅷ
表目錄……………………………………………………………………………Ⅸ

第壹章 緒論.............................................1
第一節 研究動機 ....................................... 1
第二節 研究目的 ....................................... 3

第貳章 文獻探討.........................................4
第一節 能量利用 ....................................... 4
第二節 老化與氧化壓力 .................................. 6
第三節 TLR2 與胰島素阻抗之相關研究 ...................... 8

第參章 實驗方法.........................................9
第一節 實驗動物 ....................................... 9
第二節 實驗設計 ...................................... 10
第三節 分析步驟與方法 ................................. 12
第四節 統計分析 ...................................... 19

第肆章 實驗結果........................................20
第一節 生化代謝之變化 ................................. 25
一、口服葡萄糖耐受試驗(Oral Glucose Tolerance Test, OGTT) ............................................... 25
二、胰島素阻抗指數(Homeostasis Model Assessment, HOMA) ............................................... 27
第二節 運動表現之比較 ................................. 31
一、TLR-2基因與老化於前肢抓力表現之影響 ..............31
二、TLR-2基因與老化對於耐力表現之影響 ............... 32
第三節 血液生化及肝臟與肌肉之組織中肝醣含量情形 .......... 33
一、血液生化之比較 ................................ 33
二、肝臟肝醣之比較 ................................ 35
三、肌肉肝醣之比較 ................................ 36
第四節 組織切片之觀察 ................................ 37
一、肝臟切片之比較 ................................ 37
二、肌肉切片之比較 ................................ 38

第伍章 討論...........................................39
第一節 生化代謝之比較 ................................. 39
以口服葡萄糖耐受試驗(Oral Glucose Tolerance Test, OGTT)評估生化代謝之變化 ................................39
第二節 運動表現之比較 ..................................40
第三節 血液生化以及肝臟與肌肉之組織中分子變化情形 ......... 41
一、血液生化之比較 ................................. 41
二、肝臟與肌肉組織中肝醣之比較 ...................... 43
第四節 組織切片之比較 ................................. 44

第陸章 結論與建議......................................45
一、結論 ......................................... 45
二、建議 ......................................... 45

參考文獻...............................................46

Akira, S., &; Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews Immunology, 4(7), 499-511.
Albert, E. J., &; Marshall, J. S. (2008). Aging in the absence of TLR2 is associated with reduced IFN-gamma responses in the large intestine and increased severity of induced colitis. Journal Leukocyte Biology, 83(4), 833-842.
Biddinger, S. B., Almind, K., Miyazaki, M., Kokkotou, E., Ntambi, J. M., &; Kahn, C. R. (2005). Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome. Diabetes, 54(5), 1314-1323.
Caricilli, A. M., Picardi, P. K., de Abreu, L. L., Ueno, M., Prada, P. O., Ropelle, E. R., Hirabara, S. M., Castoldi, Â., Vieira, P., Camara, N. O., Curi, R., Carvalheira, J. B., Saad, M. J. (2011). Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice. PLoS Biology, 9(12), e1001212.
Chamberland, V., &; Rioux, P. (2010). Not only students can express alcohol dehydrogenase: goldfish can too! Advances Physiology Education, 34(4), 222-227.
Champy, M. F., Selloum, M., Zeitler, V., Caradec, C., Jung, B., Rousseau, S., Pouilly, L., Sorg, T., Auwerx, J. (2008). Genetic background determines metabolic phenotypes in the mouse. Mammalian Genome, 19(5), 318-331.
Deshmukh, H. S., Hamburger, J. B., Ahn, S. H., McCafferty, D. G., Yang, S. R., &; Fowler, V. G., Jr. (2009). Critical role of NOD2 in regulating the immune response to Staphylococcus aureus. Infection Immunity, 77(4), 1376-1382.
Ennor, A. H., &; Morrison, J. F. (1958). Biochemistry of the phosphagens and related guanidines. Physiological Reviews, 38(4), 631-674.
Fitch, C. D., Jellinek, M., &; Mueller, E. J. (1974). Experimental depletion of creatine and phosphocreatine from skeletal muscle. The Journal of Biological Chemistry, 249(4), 1060-1063.
Gleeson, M., McFarlin, B., &; Flynn, M. (2006). Exercise and Toll-like receptors.. Exercise Immunology Reviews, 12, 34-53.
Gleeson, M., &; Walsh, N. P. (2011). The BASES Expert Statement on Exercise, Immunity, and Infection. Journal of Sports Science.
Hespel, P., &; Richter, E. A. (1992). Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. The Biochemical Journal, 284 ( Pt 3), 777-780.
Houtkooper, R. H., Argmann, C., Houten, S. M., Canto, C., Jeninga, E. H., Andreux, P. A., Thomas, C., Doenlen, R., Schoonjans, K., Auwerx, J. (2011). The metabolic footprint of aging in mice. Scientific Reports, 1, 134.
Ishiki, M., &; Klip, A. (2005). Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology, 146(12), 5071-5078.
Johnson, M. A., Fischer, J. G., Bowman, B. A., &; Gunter, E. W. (1994). Iron nutriture in elderly individuals. FASEB Journal, 8(9), 609-621.
Kawai, T., &; Akira, S. (2006). TLR signaling. Cell Death and Differentiation, 13(5), 816-825.
Kim, J. K., Wi, J. K., &; Youn, J. H. (1996). Metabolic impairment precedes insulin resistance in skeletal muscle during high-fat feeding in rats. Diabetes, 45(5), 651-658.
Kuo, L. H., Tsai, P. J., Jiang, M. J., Chuang, Y. L., Yu, L., Lai, K. T., &; Tsai, Y. S. (2011). Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia, 54(1), 168-179.
MacKinnon, L. T. (2000). Special feature for the Olympics: effects of exercise on the immune system: overtraining effects on immunity and performance in athletes. Immunology and Cell Biology, 78(5), 502-509.
Matsumoto, K., Ishihara, K., Tanaka, K., Inoue, K., &; Fushiki, T. (1996). An adjustable-current swimming pool for the evaluation of endurance capacity of mice. Journal of Applied Physiology, 81(4), 1843-1849.
Morino, K., Petersen, K. F., &; Shulman, G. I. (2006). Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes, 55 Suppl 2, S9-S15.
Pagala, M. K., Ravindran, K., Namba, T., &; Grob, D. (1998). Skeletal muscle fatigue and physical endurance of young and old mice. Muscle Nerve, 21(12), 1729-1739.
Pederson, B. A., Cope, C. R., Schroeder, J. M., Smith, M. W., Irimia, J. M., Thurberg, B. L., DePaoli-Roach, A. A., Roach, P. J. (2005). Exercise capacity of mice genetically lacking muscle glycogen synthase: in mice, muscle glycogen is not essential for exercise. The Journal of Biological Chemistry, 280(17), 17260-17265.
Rhee, S. H. (2011). Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. Journal of Neurogastroenterology Motility, 17(1), 28-34.
Spiller, S., Dreher, S., Meng, G., Grabiec, A., Thomas, W., Hartung, T., Pfeffer, K., Hochrein, H., Brade, H., Bessler, W., Wagner, H., Kirschning, C. J. (2007). Cellular recognition of trimyristoylated peptide or enterobacterial lipopolysaccharide via both TLR2 and TLR4. The Journal of Biological Chemistry, 282(18), 13190-13198.
Stump, C. S., Henriksen, E. J., Wei, Y., &; Sowers, J. R. (2006). The metabolic syndrome: role of skeletal muscle metabolism. Annals of Medicine, 38(6), 389-402.
Sweeney, T. E., Suliman, H. B., Hollingsworth, J. W., Welty-Wolf, K. E., &; Piantadosi, C. A. (2011). A Toll-Like Receptor 2 Pathway Regulates the Ppargc1a/b Metabolic Co-Activators in Mice with Staphylococcal aureus Sepsis. PLoS One, 6(9), e25249.
Takeda, K., &; Akira, S. (2004). Microbial recognition by Toll-like receptors. Journal of Dermatological Science, 34(2), 73-82.
Umstead, T. M., Freeman, W. M., Chinchilli, V. M., &; Phelps, D. S. (2009). Age-related changes in the expression and oxidation of bronchoalveolar lavage proteins in the rat. American Journal of Physiology Lung Cellular Molecular Physiology, 296(1), L14-29.
Walker, J. B. (1979). Creatine: biosynthesis, regulation, and function. Advances in Enzymology and Related Areas of Molecular Biology, 50, 177-242.
Wei, Y., Chen, K., Whaley-Connell, A. T., Stump, C. S., Ibdah, J. A., &; Sowers, J. R. (2008). Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. America Journal of Physiology Regulatory Integrative Comparative Physiology, 294(3), R673-680.
West, X. Z., Malinin, N. L., Merkulova, A. A., Tischenko, M., Kerr, B. A., Borden, E. C., Podrez, E. A., Salomon, R. G., Byzova, T. V. (2010). Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature, 467(7318), 972-976.
Wyss, M., &; Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80(3), 1107-1213.
Xu, J., Knutson, M. D., Carter, C. S., &; Leeuwenburgh, C. (2008). Iron accumulation with age, oxidative stress and functional decline. PLoS One, 3(8), e2865.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top