跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子庭
研究生(外文):Huang, Tzu-Ting
論文名稱:利用工業煙道廢氣培養微藻對其生物質與油脂產量之最佳化探討
論文名稱(外文):Optimizations of microalgae cultivated with the flue gas from steel plant on micaroalgal biomass and lipid productivity
指導教授:林志生林志生引用關係
指導教授(外文):Lin, Chih-Sheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:100
中文關鍵詞:小球藻工廠煙道廢氣微藻最佳化反應曲面法
外文關鍵詞:Chlorella sp.flue gasmicroalgaeoptimizationresponse surface methodology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,大氣中過量累積的二氧化碳成為全球暖化的主因,其中主要多為工廠所排放含大量二氧化碳之工業廢氣,而微藻養殖則被視為解決此問題的方法之一。微藻可行光合作用,利用光照做為能量,將二氧化碳和水轉化為生物質,達到二氧化碳減量與生產生質能料源的目的。本研究應用本實驗室所篩選出之耐溫、高生長速率,且具高二氧化碳耐受性的微藻株Chlorella sp. TT-1,通入中鋼煙道廢氣做為碳源,進行廢氣養殖微藻之試驗,用以產製微藻生物質,並萃取藻油生產生質柴油。本研究更結合反應曲面法(response surface methodology, RSM) 進行微藻養殖,找出微藻之最適化培養條件,例如微藻養殖之初始濃度、通入廢氣組成比率及廢氣通氣速率等。
本研究利用不同廢氣比例組成的氣體進行微藻養殖,實驗結果顯示以廢氣稀釋為 25 %的混合氣體進行微藻培養時,可達到最佳的生長效率,其生物質產率可達0.421 g/L/day;再則,以廢氣比率為25 %所培養的微藻,其油脂累積量最多,可達約40%的油脂含量,因此在不同的廢氣組成比例的培養下,微藻的生長速率和產脂效應會有所差異,不同的廢氣組成比率並不會顯著的影響微藻脂肪酸甲酯 (fatty acid methyl ester, FAME) 的組成。另外不同的廢氣通氣速率對微藻的生物質產率會有顯著性的影響,在0.3 vvm的通氣速率下微藻有最大的生物質產率,為0.286 g/L/day;在油脂含量的部分,在通氣速率0.3 vvm下的油脂累積可達約40%;通氣速率對FAME的累積也有影響,於0.3 vvm之高通氣速率下有最多之FAME,比低通氣速率下之微藻其FAME在微藻內的含量多約4~5 %。
為探討光照於利用工廠廢氣養殖微藻試驗上之影響,我們將養殖的Chlorella sp. TT-1通入工廠廢氣,並以全日照和半日照兩種不同的光照模式進行微藻養殖。結果顯示微藻之生物質產率在全日照和半日照下,分別為0.299 g/L/day和0.137 g/L/day,明顯可得知微藻在以廢氣培養下,全日照會有較高的產率;另外,微藻之油脂含量在全日照和半日照下分別為37 %和15 %,可看出油脂的合成累積與光照時間是具有相關性;在FAME的部分,以半日照所培養之Chlorella sp. TT-1的飽和脂肪酸(C16:0)比例較多,而以全日照培養則有較多的不飽和脂肪酸(C18:1和C18:2)的累積。
我們根據上述的實驗結果,結合反應曲面法進行微藻養殖最佳化探討,RSM可做實驗因子設計並模擬反應曲面,以較少的實驗成本和時間獲得可信賴且有效的資訊,並可討論因子間的交互作用,進而探討多因子對實驗結果的影響性,並以實驗結果得一模擬公式,找出最適之操作條件。本研究利用微藻培養初始濃度、廢氣組成比率及廢氣通氣速率為實驗因子,探討微藻培養最適化之條件。實驗結果顯示,當微藻株在初始濃度為0.37 g/L、通氣量為0.30 vvm及工業煙道廢氣比率為75 %時,可得到最佳的生物質產率0.486 g/L/day;在初始濃度為0.35 g/L、通氣量為0.24 vvm及工業煙道廢氣比率為75 %時,可得到最佳的油脂產率0.216 g/L/day;在初始濃度為0.37 g/L、通氣量為0.25 vvm及工業煙道廢氣比率為74 %時,可得到最佳的脂肪酸甲酯產率0.157 g/L/day。此外,在上述實驗所得出之最佳微藻養殖參數下,我們另外再增加光照強度至500 μmol/m2/s和700 μmol/m2/s,以探討其對生長速率和產脂效應的影響。在500 μmol/m2/s下微藻有最大的生物質產率0.390 g/L/day,且油脂累積可高達約49 %,另外在FAME的組成部分,500 μmol/m2/s可顯著促進C16:0脂肪酸的累積。

In the recent years, global warming becomes more serious problem due to the increasing carbon dioxide (CO2) accumulated in the atmosphere, and the plant steel for industry plays the important role in emitting flue gas which is CO2-rich. Microalgae are the candidate to solve the problem by photosynthesis, which use sun light as energy source to convert water and CO2 into biomass, and it can reduce the CO2 emission and produce biomass. We utilized the isolated thermal- and CO2-tolerant mutant microalga Chlorella sp. TT-1 to reduce CO2 in flue gas from the steel plant and produce microalgal biomass which can be extracted oil to produce biodiesel. Furthermore, we cultivated the microalgae combined with response surface methodology to get the optimized cultivation conditions under the specific initial density, aeration rate, and flue gas ratio.
To investigate the effect of flue gas ratio, there were different flue gas ratio gases utilized to study the effect of flue gas ratio in microalgal cultivation. The microalga Chlorella sp. TT-1 aerated with 25 % flue gas had more biomass productivity, which was 0.421 g/L/day. Lipid content of Chlorella sp. TT-1 cultures with 25 % flue gas ratio aeration were 40%. In the part of FAME production, there was no difference between the fatty acid methyl ester (FAME) content of Chlorella sp. TT-1 cultivated with different flue gas ratios. In the part about the effect of aeration rate, the biomass productivity of Chlorella sp. TT-1 at 0.3 vvm aeration rate has the maximum value, and it is 0.286 g/L/day. The maximum lipid contents of Chlorella sp. TT-1 was 40 % when it cultivated with 0.3 vvm aeration rates, and the experimental result was obtained that the biomass production and lipid content in microalga cells increased with the increasing aeration rate. The experimental result about FAME content showed it would slightly increase with high aeration rate comparing to low aeration rate, and the variance was 4~5 % in total FAME content.
In order to investigate the effect of illumination in microalgae culture aerated with flue gas, Chlorella sp. TT-1 was cultivated under full and half illumination. The biomass productivity of Chlorella sp. TT-1 in full and half illumination were 0.299 g/L/day and 0.137 g/L/day, respectively. The better irradiation time is full illumination for microalgal cultivation, and the light should be devised when the microalgae cultivated with flue gas. The lipid content of Chlorella sp. TT-1 under full and half illumination were approximately 37 % and 15 %, respectively. Obviously, the lipid in microalgal cells under full illumination was more than it cultivated under half illumination. The saturated fatty acid (C16:0) accounted for the most part in Chlorella sp. TT-1 cultivated under half illumination, while the microalgae had more long and unsaturated fatty acid (C18:1 and C18:2) under full illumination.
Instead of enormous experiments to test, we cultivated microalga Chlorella sp. TT-1 combining response surface methodology which can reduce the experimental times to diminish the cost, and simulate the experimental formula to get the optimum condition for microalgal cultivation. The optimized biomass productivity of Chlorella sp. TT-1 is 0.486 g/L/day when the initial density of 0.37 g/L aerated with 75 % flue gas ratio at 0.30 vvm aeration rate; the optimized lipid productivity of Chlorella sp. TT-1 is 0.216 g/L when the initial density of 0.35 g/L aerated with 75 % flue gas ratio at 0.24 vvm aeration rate; the optimized FAME productivity of Chlorella sp. TT-1 is 0.157 g/L when the initial density of 0.37 g/L aerated with 74 % flue gas ratio at 0.25 vvm aeration rate. In order to investigate whether the enhancement of the illumination is necessary in microalgal culture aerated with flue gas under the optimum condition of microalgal cultivation and the effect of different illumination intensity for microalgal cultivation, the different illuminations were utilized and irradiated for the microalgal cultivation with flue gas. The microalgal cultivation cultivated with 500 μmol/m2/s had the maximum microalgae biomass productivity 0.390 g/L/day. The illumination of 500 μmol/m2/s could enhance the lipid accumulation, and it could obtain the lipid content of 49%. Furthermore, the culture irradiated under 500 μmol/m2/s had more C16:0 content, and it means higher illumination would induce microalgae to synthesize the saturated carbon compound of shorter chain.

I. Literature Review
1.1 General introduction 1
1.2 Microalgae 2
1.3 Microalgae cultivations 5
1.4 Experimental design 12
1.5 Bio-mitigation of CO2, NOx and SOx in flue gas with microalgae 14
1.6 Biodiesel 18
II. Materials and Methods
2.1. Microalgal cultures 20
2.2. Culture medium and chemicals 20
2.3. Experimental system of indoor photobioreactor 21
2.4. Preparation of the inoculums 21
2.5. Experiment design 21
2.6. Lipid extraction 23
2.7. Transesterification 23
2.8. Fatty acid profile analysis 23
2.9. Analyses 24
2.9.1 Microalgae cell counting 24
2.9.2. Measurement of growth rate 24
2.9.3 Measurements of pH 25
2.9.4 Measurement of light 25
2.9.5 Determinations of CO2(g) 25
III. Results and Discussion
3.1 Profile of Chlorella sp. TT-1 cultivated with different flue gas
ratio 26
3.1.1 Growth profile in Chlorella sp. TT-1 cultures with different
flue gas ratios 26
3.1.2 Lipid content and production in Chlorella sp. TT-1 cultures
with different flue gas ratios 28
3.1.3 Lipid composition in Chlorella sp. TT-1 cultures with
different flue gas ratios 29
3.2 Profile of Chlorella sp. TT-1 cultivated at different aeration
rate 29
3.2.1 Growth profile in Chlorella sp. TT-1 cultures with different
aeration rates 29
3.2.2 Lipid content and production in Chlorella sp. TT-1 cultures
with different aeration rates 30
3.2.3 Lipid composition in Chlorella sp. TT-1 cultures with
different aeration rates 31
3.3 Microalgae cultivation under the illumination of full and half
illumination aerated with flue gas 31
3.3.1 Growth profile of Chlorella sp. TT-1 under full and half
illumination 31
3.3.2 Lipid content and production of Chlorella sp. TT-1 under full
and half illumination 32
3.3.3 Lipid composition of Chlorella sp. TT-1 under full and half
illumination 33
3.4 The optimization of Chlorella sp. TT-1 aerated with flue gas in
biomass productivity, lipid productivity, and FAME
productivity 34
3.4.1 The optimization of Chlorella sp. TT-1 in biomass
productivity 35
3.4.2 The optimization of Chlorella sp. TT-1 in lipid
productivity 37
3.4.3 The optimization of Chlorella sp. TT-1 in FAME
content 39
3.4.4 The predicted value and experimental productivity under
optimum microalgae cultivation ondition 40
3.5 Different light illumination used in the optimum microalgae
cultivation 41
3.5.1 Growth profile of Chlorella sp. TT-1 cultivated with
different illuminations 41
3.5.2 Lipid content and production of Chlorella sp. TT-1 cultivated
with different illuminations 42
3.5.3 Lipid composition and production of Chlorella sp. TT-1
cultivated with different lluminations 42
IV. Conclusions 44
V. References 47
Figures 59
Tables 79
Amin S. 2009. Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management 50:1834-1840.
Anderson D, Masterson D, McDonald B, Sullivan L. 2003.Industrial biodiesel plant design and engineering: practical experience. In: Presented at the chemistry and technology conference. International Palm Oil Conference (PIPOC), Putrajaya Mariot Hotel, Malaysia, 24-28.
Aydin G, Karakurt I, Aydiner K. 2010. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity, and safety. Energy policy 38:5072-5080.
Badger MR, Price GD. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany 54:609-22.
Ball R, Sceats MG. 2010. Separation of carbon dioxide from flue gas emissions using Endex principles. Fuel 89:2750-2759.
Barbosa MJ, Albrecht M, Wijffels RH. 2003. Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and Bioengineering 83:112-120.
Barbosa MJ, Zijffers WJ, Nisworo A, Vaes W, Schoonhoven VJ, Wijffels RH. 2005. Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnology and Bioengineering 89:233-242.
Becker EW. 1994. Microalgae Biotechnology and Microbiology, Cambridge University Press.
Bezerra MA, Santelli RE , Oliveira EP, Villar LS, Escaleira LA. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965-977
Bilanovic D, Andargatchew A, Kroeger T, Shelef G. 2009. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations—response surface methodology analysis. Energy Conversion and Management 50:262-267.
Borowitzka MA. 1999. Commercial production of microalgae: ponds, tanks, tubes, and fermenters. Journal of Biotechnology 70:313-412.
Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH. 2007. Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnology and Bioengineering 97:1108-1120.
Bozbas K. 2008. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable and Sustainable Energy Reviews 12:542-552.
Bradley N. 2007. The response surface methodology. the Graduate Faculty, Indiana University South Bend, in partial fulfillment of the requirements for the degree of Master of Science.
Brennan L, Owende P. 2010. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14:557-577.
Brown LM. 1996. Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion and Management 37:1363-1367.
Bruns RE, Scarminio IS, Neto BB. 2006. Statistical Design – Chemometrics, Elsevier, Amsterdam.
Callaway JC. 2004. Hempseed as a nutritional resource: an overview. Euphytica 140:65-72.
Carlozzi P, Pushparaj B, DeglInnocenti A, Capperucci A. 2006. Growth characteristics of Rhodopseudomona palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation of photosynthetic efficiency. Applied Microbiology and Biotechnology 73:789-795.
Carlozzi P. 2000. Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Applied Microbiology and Biotechnology 54:14-22.
Carlsson A, van Beilen J, Moller R, Clayton D. 2007. Micro and Micro-algae: Utility for Industrial Applications, University of York.
Carvalho AP, Meireles LA, Malcata FX. 2006. Microalgal Reactors: a review of enclosed system designs and performances. Biotechnology Progress 22:1490-1506.
Chang EH, Yang SS. 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Botanical Bulletin of Academia Sinica 44:43-52.
Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS. 2008. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. International Journal of Hydrogen Energy 33:6878-6885.
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102:71-81.
Chisti Y. 2006. Microalgae as sustainable cell factories. Environmental Engineering and Management Journal 5:261-274.
Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25:294-306.
Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26:126-131.
Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology 99:3389-3396.
Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang SH, Lin CS. 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology 102:9135-9142.
Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. 2009a. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology 100:833-838.

Chiu SY, Tsai MT, Kao CY, Ong SC, Chen CH, Lin CS, 2009b. The air-lift photobioreactors with flow patterning for a high-density culture of microalgae and carbon dioxide removal. Engineering in Life Sciences 9:254-260.
Clark J, Deswarte F. 2008. Introduction to chemicals from biomass. John Wiley & Sons.
Converti A, Lodi A, Del Borghi A, Solisio C. 2006. Cultivation of Spirulina platensis in a combined airlift-tubular system. Biochemical Engineering Journal 32:13-18.
Cornet JF, Dussap CG, Gros JB, Binois C, Lasseur C. 1995. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chemical Engineering Science 50:1489-1500.
Csoogoor Z, Herrenbauer M, Schmidt K, Posten C. 2001. Light distribution in a novel photobioreactor modelling for optimization. Journal of Applied Phycology 13:325-333.
Cuaresma M, Janssen M, Vilchez C, Wijffels RH. 2009. Productivity of Chlorella sorokiniana in a Short Light-Path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering 104:352-359.
de Morais MG, Costa JAV. 2007a. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology 129:439-445.
de Morais MG, Costa JAV. 2007b. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management 48:2169-2173.
Degen J, Uebele A, Retze A, Scmid-Staiger U, Troosch W. 2001. A novel photobioreactor with baffles for improved light utilization through the flashing light effect. Journal of Biotechnology 92:89-94.
Delucchi MA. 2003. A Lifecycle Emissions Model (LEM): lifecycle emissions from transportation fuels; motor vehicles, transportation modes, electricity use, heating and cooking fuels. Institute of transportation studies one shields avenue university of California.
Demirbas A. 2009. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 50:14-34.
Doran PM. 1995. Bioprocess Engineering Principles. Academic Press.
Doucha J, Lívanský K. 2006. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgae (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. Journal of Applied Phycology 18:811-826.
Doucha J, Straka F, Lı´vansky´ K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology 17:403-412.
Eriksen N. 2008. The technology of microalgal culturing. Biotechnology Letters 30:1525-1536.

Eriksen NT, Riisgård FK, Gunther W, Iversen JJL. 2007. On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas tight photobioreactor. Journal of Applied Phycology 19:161-174.
Favre N, Christ ML, Pierre AC. 2009. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. Journal of Molecular Catalysis B: Enzymatic 60:163-170.
Fernandes BD, Dragone GM, Teixeira JA, Vicente AA. 2010. Light regime characterization in a photobioreactor for cultivation of microalgae with high starch content for bioethanol production. Applied Biochemistry and Biotechnology 161:218-226.
Fernández AFG, Hall DO, Guerrero EC, Rao KK, Grima ME. 2003. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. Journal of Biotechnology 103:137-152
Flickinger MC, Drew SW. 1999. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. John Wiley & Sons 3:1753-1769.
Geider RJ, La Roche J. 2002. Red field revisited: variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37:1-17.
Giordano M, Beardall J, Raven JA. 2005b. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Physiology 56:99-131.
Giordano M, Norici A, Hell R. 2005a. Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytologist 166:371-82.
Granite EJ, O’Brien T. 2005. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology 86:1423-1434.
Green BR, Durnford DG. 1996. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 47:685-714.
Griffiths MJ, Harrison TL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21:493-507.
Grima ME, Belarbi EH, Fernández AFG, Medina RA, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances 20:491-515.
Grima ME, Fernández AFG, Camacho GF, Chisti Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology 70:231-247.
Grima ME, Fernández AFG, Camacho GF, Rubio CF, Chisti Y. 2000. Scale-up of tubular photobioreactors. Journal of Applied Phycology 12:355-368.
Grobbelaar JU. 2000. Physiological and technological considerations for optimizing mass algal cultures. Journal of Applied Phycology 12:201-206.


Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. in "Culture of Marine Invertebrate Animals." (eds: Smith WL and Chanley MH) Plenum Press, New York, USA. 26-60.
Hai T, Ahlers H, Gorenflo V, Steinbuchel A. 2000. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Applied Microbiology and Biotechnology 53:383-389.
Hall DO, Fernández AFG, Guerrero EC, Rao KK, Grima ME. 2003. Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamic and mass transfer and assessment of biomass productivity. Biotechnology and Bioengineering 82:62-73.
Hanagata N, Takeuchi T, Fukuju Y, BarnesDJ, Karube I. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345-3348.
Hejazi MA, Wijffels RH. 2004. Milking of microalgae. Trends in Biotechnology 22:189-194.
Hu Q, Guterman H, Richmond A. 1996. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering 51:51-60.
Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi A. 1998a. Ultrahigh-cell-density culture of a marine alga Chlorococcum littorale in a flat-plate photobioreactor. Applied Microbiology and Biotechnology 46:655-62.
Hu Q, Yair Z, Richmond A. 1998b. Combined effects of light intensity, light path and culture density on output rate of Spirulina platensis (Cyanobacteria). European Journal of Phycology 33:165-171.
Iqbal M, Grey D, Sarkissian FS, Fowler MW. 1993. A flat-sided photobioreactor for continuous culturing microalgae. Aquacultural Engineering 12:183-190.
Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffels RH. 2000. Scale-up of photobioreactors: effects of mixing-induced light/dark cycles. Journal of Applied Phycology 12:225-237.
Janssen M, Tramper J, Mur LR, Wijffels RH. 2003. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering 81:193-210.
Jansson C, Northen T. 2010. Calcifying cyanobacteria — the potential of biomineralization for carbon capture and storage. Current Opinion in Biotechnology 21:1-7.
Jimeenez C, Cossiio BR, Labella D, Xavier Niell F. 2003. The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179-190.
Jin HF, Lim BR, Lee K. 2006. Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of Environmental Science and Health Part A 41:2813-2824.
Kadam KL. 1997. Power plant flue gas as a source of CO2 for Microalgae cultivation: economic impact of different process options. Energy Conversion and Management 38:505-510.
Kadam KL. 2001. Microalgae production from power plant flue gas: environmental implications on a life cycle basis. Colorado, USA: National Renewable Energy Laboratory.
Kadam KL. 2002. Environmental implications of power generation via coal microalgae cofiring. Energy 27:905-922.
Kaewpintong K. 2004. Cultivation of Haematococcus pluvialis in Airlift Bioreactor.Master thesis in Chemical Engineering. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University.
Karl TR, Trenberth KE. 2003. Modern Global Climate Cange. Science 302:1719-1723.
Kheira AA, Atta NM. 2009. Response of Jatrophacurcas L. to water deficits: Yield, water use efficiency and oilseed characteristics. Biomass and Bioenergy 33:1343-1350.
Knothe G. 2008. Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358-1364.
Kodama M, Ikemoto H, Miyachi S. 1993. A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology 1:21-25.
Körbahti BK, Rauf MA. 2008. Application of response surface analysis to the photolytic degradation of Basic Red 2 dye. Chemical engineering journal 138:166-171.
Krichnavaruk S, Powtongsook S, Pavasant P. 2007. Enhancd productivity of Chaetoceros calcitrans in airlift photobioreactors. Bioresource Technology 98:2123-2130.
Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology 28:371-380.
Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove E. 2009. Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology 85:387-394.
Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 102:4945-4953.
Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology 43:6475-6481.
Lee HS, Seo MW, Kim ZH, Lee CG. 2006. Determining the best specific light uptake rates for the lumostatic cultures of bubble column photobioreactors. Enzyme and Microbial Technology 39:447-452.
Li J, Shou N, Su WW. 2003. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurements. Biochemical Engineering Journal 14:51-65.
Li Y, Wang B, Wu N, Lan CQ. 2008b. Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Applied Microbiology and Biotechnology 81:629-636.

Li Y, Wu N, Lan CQ, Nathalie DC. 2008a. Biofuels from microalgae. Biotechnology Progress 24:815-820.
Lorenz RT, Cysewski GR. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18:160-167.
Loubiere K, Olivo E, Bougaran G, Pruvost J, Robert R, Legrand J. 2009. A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotechnology and Bioengineering 102:132-147.
Ma FR, Hanna MA. 1999. Biodiesel production: a review. Bioresource Technology 70:1-15.
Maeda K, Owada M, Kimura N, Omata K, Karube I. 1995. CO2 fixation from flue gas on coal fired thermal power plant by microalgae. Energy Conversion and Management 36:717-720.
Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14:217-232.
McGin PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O'Leary SJB. 2011. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynthesis Research 109:231-247.
Merchuk JC, Gluz M, Mukmenev I. 2000. Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp.. Journal of Chemical Technology & Biotechnology 75:1119-1126.
Metting FB. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17:477-489.
Mikhodyuk OS, Zavarzin GA, Ivanovsky RN. 2008. Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp. Biomedical and Life Sciences 77:412-418.
Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y. 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology 70: 249-270.
Moheimani NR. 2005. The culture of Coccolithophorid Algae for carbon dioxide bioremediation. PhD thesis. Murdoch University.
Molina E, Fernández J, Acieen FG, Chisti Y. 2001. Tubular photobioreactor design for algal cultures. Journal of Biotechnology 92:113-131.
Montgomery, Douglas C. 2006. Design and Analysis of Experiments: Response surface method and designs. John Wiley&Sons.
Munoz R, Guieysse, B. 2006. Algal-bacterial processes for thetreatment of hazardous contaminants: a review. Water Research 40:2799-2815.
Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K. 2001. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochemical Engineering Journal 7:241-246.

Noureddini H, Harkey D, Medikonduru V. 1998. A continuous process for the conversion of vegetable oils into methyl esters of fatty acids. Journal of the American Oil Chemists' Society 75:1775-1783.
Ogbonna JC, Tanaka H. 2000. Light requirement and photosynthetic cell cultivation – Developments of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology 12:207-218.
Olaizola M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology 12:499-506.
Olaizola M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering 20:459-466.
Ong SC, Kao CY, Chiu SY, Tsai MT, Lin CS. 2010. Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application on outdoor photobioreactor cultivation. Bioresource Technology 101:2880-2883.
Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL, Inomata H. 2009. Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnology Progress 25:492-498.
Patil V, Kallqvist T, Olsen E, Vogt G, Gislerod HR. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International 15:1-9.
Patil V, Tran KQ, Giselrod HR. 2008. Toward sustainable production of biofuels from microalgae. International Journal of Molecular Sciences 9:1188-1195.
Peterson CL, Hustrulid T. 1998. Carbon cycle for rapeseed oil biodiesel fuels. Biomass and Bioenergy 14:91-101.
Poncet JM, Véron B. 2003. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnology letters 25:2017-2022.
Posten C, 2009. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences 9:165-177.
Price GD, Badger MR, Woodger FJ, Long BM. 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanisms (CCM): functional components, Ci transporters, diversity, genetic regulation, prospects for engineering into plants. Journal of Experimental Botany 59:1444-1461.
Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65:635-648.
Pulz O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 57:287-293.
Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. 2008. A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology 34:77-88.
Rathbauer J, Prankl H, Krammer K. 2002. Energetic use of natural vegetable oil in Austria. Austria: BLT – Federal Institute of Agricultural Engineering.

Ratledge C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807-815.
Reijnders L, Huijbregts MAJ. 2008. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans. Journal of Cleaner Production 16:1943-1948.
Richmond A, Cheng-Wu Z, Zarmi Y. 2003. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomolecular Engineering 20:229-236.
Richmond A. 2000. Microalgal biotechnology at the turn of the millennium: a personal view. Journal of Applied Phycology 12:441-451.
Richmond A. 2004. Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd.
Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G. 2008. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102:100-112.
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology 19:430-436.
Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima ME. 2003. A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering 81:459-473.
Ryu HJ, Oh KK, Kim YS. 2009. Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. Journal of industrial and engineering chemistry 15:471-475.
Saka S, Kusdiana D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225-231.
Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I. 1995. Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Conversion and Management 36:693-696.
Samson R, Leduy A. 1985. Multistage continuous cultivation of blue-green alga Spirulina maxima in flat tank photobioreactors. Canadian Journal of Chemical Engineering 63:105-112.
Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y. 1999. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology 70:249-270.
Sarmidi A. 2009. Review on biofuel oil and gas production processes from microalgae. Energy conversion and management 50:1834-1840.
Scragg AH, Illman AM, Carden A, Shales SW. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy 23:67-73.

Sharma YC, Singh B. 2009. Development of biodiesel: current scenario. Renewable and Sustainable Energy Reviews 13:1646-1651.
Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H. 1998a. An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory (NREL) and US Department of Energy (USDOE).
Sheehan J, Dunahay T, Benemann JR, Roessler P. 1998b. A look back a the U.S. Department of Energy’s Aquatic Species Program - biodiesel from algae. U.S. Department of Energy.
Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T. 2011. Acclimation of Nannochloropsis gaditana to different illumination regimes: Effects on lipids accumulation. Bioresource Technology 102:6026-6032.
Sloth JK, Wiebe MG, Eriksen NT. 2006. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology 38:168-175.
Sobczuk TM, Camacho FG, Rubio FC, Fernández AFG, Grima ME. 2000. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67:465-475.
Sobszuk TM, Camacho FG, Grima ME, Chisti Y. 2006. Effects of agitation on the microalgae Phaeodactylum triconutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering 28:243-250.
Solovchenko AE, Goldberg IK, Cohen SD, Cohen Z, Merzlyak MN. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. Journal of Applied Phycology 20:245-251.
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006a. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101:87-96.
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006b. Optimization of Nannochloropsis oculata growth using the response surface method. Journal of Chemical Technology and Biotechnology 81:1049-1056.
Stepan DJ, Shockey RE, Moe TA, Dorn R. 2002. Carbon dioxide sequestering using microalgae systems. Pittsburgh, PA: U.S. Department of Energy.
Stephen M. 1974. Gergonne's 1815 paper on the design and analysis of polynomial regression experiments. Historia Mathematica 1:431-439.
Stumm W, Morgan JJ. 1981. Aquatic Chemistry. 2nd ed. New York: John Wiley & Sons.
Suh IS, Lee CG. 2003b. Photobioreactor engineering: design and performance. Biotechnology and Bioprocess Engineering 8:313-321.
Suh IS, Lee SB. 2001. Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. Journal of Applied Phycology 13:381-388.
Suh IS, Lee SB. 2003a. A light distribution model for an internally radiating photobioreactor. Biotechnology and Bioengineering. 82:180-189.

Tang D, Han W, Li P, Miao X, Zhong J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102:3071-3076.
Terry KL, Raymond LP. 1985. System design for the autotrophic production of microalgae. Enzyme and Microbial Technology 7:474-487.
Thomas WH, Tornabene TG, Weissman J. 1984. Screening for lipid yielding microalgae: activities for 1983.
Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G. 1986. Production of Sprirulina biomass in closed photobioreactors. Biomass 1:61-74.
Tramper J, Battershill C, Brandenburg W, Burgess G, Hill R, Luiten E, Müller W, Osinga R, Rorrer G, Tredici M, Uriz M, Wright P, Wijffels R. 2003. What to do in marine biotechnology? Biomolecular Engineering 20:467-471.
Travieso L, Hall DO, Rao KK, Benitez F, Saanchez E, Borja R. 2001. A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. International Biodeterioration & Biodegradation 47:151-155.
Tredici MR, Zittelli GC. 1998. Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnology and Bioengineering 57:187-197.
Tredici MR. 2010. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143-162.
Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A. 1990. Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiology 93:851-856.
Ugwu CU, Aoyagi H, Uchiyama H. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology 99:4021-4028.
Van Den Hende S, Vervaeren H, Boon N. 2012. Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnology Advances.
Vega-Estrada J, Montes-Horcasitas MC, Domı´nguez-Bocanegra AR, Can˜izares-Villanueva RO. 2005. Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Applied Microbiology and Biotechnology 68:31-35.
Vollmann J, Moritz T, Karg C, Baumgartner S, Wagentrist H. 2007. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products 26:270-277.
Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchhuk JC. 2005. Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Industrial & Engineering Chemistry Research 44:6154-6163.
Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79:707-718.

Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal 37:21-25.
Watanabe Y, Hall DO. 1996. Photosynthetic CO2 conversion technologies using a photobioreactor incorporating microalgae energy and material balances. Energy Conversion and Management 37:1321-1326.
Williams JA. 2002. Keys to Bioreactor selection. CEP Magazine 3:34-41.
Wu HL, Hseu RS, Lin LP. 2001. Identification of Chlorella sp. isolates using ribosomal DNA sequences. Botanical Bulletin of academica sinica 42:115-121.
Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126:499-507.
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20:14-27.
Yeh NC, Chung JP. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable & sustainable energy reviews 13:2175-2180.
Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101:71-74.
Yun YS, Lee SB, Park JM, Lee CI, Yang JW. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology & Biotechnology 69:451-455.
Zhang K, Kurano N, Miyachi S. 2002. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess and Biosystems Engineering 25:97-101.
Zhang K, Miyachi S, Kurano N. 2001. Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Applied Microbiology and Biotechnology 55:428-433.
Zhang Z, Zheng H. 2009. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials 172:1388-1393.
Zitelli GC, Rodolfi L, Biondi N, Tredici MR. 2006. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932-943.
Znad H, Naderi G, Ang HM, Tade MO. 2008. Hybrid solar and electric lighting (HYSEL) for space light support. Presentation at Carbon Recycling Forum 2008, Arizona.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊