跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊承翰
研究生(外文):Yang, Cheng-Han
論文名稱:公共運輸使用率之關鍵影響因素分析
論文名稱(外文):Determinants of Public Transportation Usage Rate
指導教授:邱裕鈞邱裕鈞引用關係
指導教授(外文):Chiou, Yu-Chiun
學位類別:碩士
校院名稱:國立交通大學
系所名稱:交通運輸研究所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:129
中文關鍵詞:公共運輸使用率迴歸分析總體羅吉特地理加權迴歸
外文關鍵詞:public transportation usage rateOrdinary Least SquareAggregate Logit ModelGeographically Weighted Regression
相關次數:
  • 被引用被引用:7
  • 點閱點閱:2570
  • 評分評分:
  • 下載下載:382
  • 收藏至我的研究室書目清單書目收藏:0
旅運者為克服環境阻抗,會選擇不同運輸方式來達成旅次目的,近年來,臺灣私人運輸的成長,造成了交通壅塞和環境污染等問題,為達永續運輸之目的,促使各地方政府不斷地發展公共運輸,以減少私人運輸的使用,或提升當地經濟發展。然而,策劃有效之提升公共運輸使用率策略,仍需仰賴對於影響公共運輸使用之重要因素的了解。
基於上述原因,以往為找出影響公共運輸使用率之因素,因受到區域特徵屬性限制,研究常局限於較小範圍,故本研究將以臺灣348個鄉鎮市區為研究樣本,分別建構全域型(Global)與區域型(Local)兩模式,其中全域型模式因估計出參數值,於各地區屬一均質狀態,故稱之,採用模式為迴歸分析與總體羅吉特分析,而區域型模式可估計出因地而異之參數值,採用模式為地理加權迴歸(GWR)。將臺灣348個鄉鎮市區之現有能取得資料,分別以社會經濟、公共運輸供給和私人運輸相關變數,來進行模式推估,其中區域型地理加權迴歸為與全域型迴歸分析參數做比較,採用與迴歸分析所推估出相同之顯著變數。最後,透過修正後MAPE來比較各模式之績效,找出最佳模式後,提出公共運輸使用率之關鍵影響因素,並給予相關改善策略。
模式推估結果顯示,因地理加權迴歸可估出因地而異之參數值,其修正後 MAPE相較於全域型模式,為準確度最高之模式。而該模式結果表示公共運輸使用率與未成年人口比例於花蓮地區呈正相關,於臺中以北地區呈負相關;與低收入戶於桃園縣、新竹縣和宜蘭縣等地呈正相關,於南投縣、花蓮縣和苗栗縣等地呈負相關;與公路客運平均班次數於新竹以北地區呈正相關;與市區公車路線數於南投以北地區呈正相關;與市區公車平均車齡於桃園以北地區呈負相關;與機車持有率於新竹縣、屏東縣等地呈正相關,於東北部呈負相關;與道路長度於新竹以北、中央山脈中南部分地區呈負相關。基於以上各地區之關鍵影響因素,提出相關對策之建議。

With the rapid growth in private vehicles in Taiwan in recent years, traffic congestion and air pollution become a major challenge for urban development. Towards transportation sustainability and continuing economic development, to effectively reduce travelers’ dependency in using private vehicles and increase their preference to public transportation is obviously the only solution. According to recent official national travel survey in Taiwan, usage rate of public transportation remarkably differs across Taiwan. Without knowing the key factors affecting traveler’s mode decision, it is impossible to propose effective public transportation improvement strategies.
Based on this, this study employs global and local regression models to recognize the key determinants for the usage rates of a total of 348 areas (township or districts) in Taiwan. The global regression model (i.e. Ordinary Least Square, OLS; Aggregate Logit Model, ALM) is to estimate one set of parameters associated with explanatory variables to explain the differences in the usage rates of all study districts, while the local regression model (i.e. Geographically Weighted Regression, GWR) allows the estimated parameters differ depending upon the correlation among neighboring areas. By referring related studies, a total of 29 potential explanatory variables are selected, which can be divided into three categories: social-economic variables (11 variables), private vehicle variables (3 variables) and public transportation variables (15 variables). Additionally, the performances of these three models are compared in terms of corrected MAPE.
The estimation results show that the GWR model performs best with the lowest corrected MAPE value. A total of 7 variables are significantly tested and most of them have rather different parameters across Taiwan, where the percentage of population aged 0-17 has a positive effect to public transportation usage rate of the areas in the eastern Taiwan, especially in Hualian county, but negative effect in most of areas in the northern Taiwan. Since most of these people are captive riders, they depend on public transportation (in rural areas) or their parents private vehicles to school. Number of low-income households has a positive effect in Taoyuan, Hsinchu, and I-lan counties but a negative effect in Nantou, Hualian, and Maoli counties. As anticipation, frequency of inter-city bus has a positive effect to the areas in the northern Taiwan and average bus age of city bus has a negative effect to the areas in the northern Taiwan. It is interesting to note that motorcycle ownership has a positive effect to the areas in Hsinchu and Pingtung counties and a negative effect to the areas in the north-eastern Taiwan, suggesting that people in rural areas use motorcycles to reach public transportation stations but people in urban areas prefer to use motorcycles as the major mode in the whole trip instead. Length of roads has a negative effect to the areas in northern and middle-southern Taiwan. Based on these findings, corresponding strategies are then proposed.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 3
1.4 研究流程與內容 3
第二章 文獻回顧 6
2.1 運具使用率 6
2.2 運具運量 15
2.3 小結 22
第三章 研究方法 24
3.1 迴歸分析 24
3.2 總體羅吉特分析 25
3.3 地理加權迴歸 26
第四章 資料蒐集與基本統計分析 31
4.1 資料蒐集 31
4.2 基本統計分析 41
第五章 全域型模式建構與估計 70
5.1 迴歸分析 70
5.2 總體羅吉特分析 77
5.3 小結 84
第六章 區域型模式建構與估計 85
6.1 地理加權敘述統計分析 85
6.2 地理加權迴歸分析 99
6.3 小結 114
第七章 模式績效比較 116
7.1 準確度分析 116
7.2 政策敏感度分析 120
第八章 結論與建議 121
8.1 結論 121
8.2 建議 125
參考文獻 126

[1] 交通部統計處(民98),民眾日常使用運具狀況調查實施計畫,台北市:交通部。
[2] 交通部統計處(民98),臺灣地區相關運具使用率指標簡析及探討,台北市:交通部。
[3] 財政部財稅資料中心(民100),九十八年度綜合所得稅申報核定初步開徵統計專冊,台北市:財政部。
[4] 馮正民、邱裕鈞(民93),「研究分析方法」,新竹市:建都文化。
[5] 凌瑞賢(民90),「運輸規劃原理與實務」,台北:鼎漢國際工程公司。
[6] 李翠捥(民96),知識經濟對國道客運業經營績效影響之研究,國立成功大學交通管理科學系碩士班:碩士論文。
[7] 黃于祐(民97),台北市房價影響因素之空間分析- 地理加權迴歸方法之應用,國立台北大學都市計畫研究所:碩士論文。
[8] 交通部公路總局高雄區監理所(民99),汽、機車鄉鎮市數量統計表,http://www.komv.gov.tw/cht/index.php?code=list&ids=155。
[9] 交通部公路總局嘉義區監理所(民99),汽、機車鄉鎮市數量統計表,http://www.cyi.gov.tw/car_num/search_num.asp。
[10] 交通部公路總局臺中區監理所(民99),汽、機車鄉鎮市數量統計表,http://www.hide7141.tmv.gov.tw/car_num/show_num.htm。
[11] 交通部公路總局新竹區監理所(民99),汽、機車鄉鎮市數量統計表,http://www.hmv.gov.tw/SCH_R_C001.aspx。
[12] 交通部公路總局臺北區監理所(民99),汽、機車鄉鎮市數量統計表,http://www.tmvso.gov.tw/data_search/data_8.aspx。
[13] 中華民國統計資訊網,縣市重要統計指標,http://ebas1.ebas.gov.tw/pxweb/Dialog/statfile9.asp。
[14] 交通部運輸研究所,臺灣本島市鄉鎮區界圖層(Twn_town-97tm2-mif),http://www.iot.gov.tw/ct.asp?xItem=154948&ctNode=1091。
[15] Blainey, S. (2010), “Trip End Models of Local Rail Demand in England and Wales,” Journal of Transport Geography, Vol. 18, No. 1, pp. 153-165.
[16] Boame, A. K. (2004), “The Technical Efficiency of Canadian Urban Transit Systems,” Transportation Research Part E, Vol. 40, No. 5, pp. 401-416.
[17] Buehler, R. (2011), “Determinants of Transport Mode Choice: A Comparison of Germany and the USA,” Journal of Transport Geography, Vol. 19, No. 4, pp. 644-657.
[18] Chen, C., Chen, J. and Barry, J. (2009), “Diurnal Pattern of Transit Ridership:A Case Study of the New York City Subway System,” Journal of Transport Geography, Vol. 17, No. 3, pp. 176-186.
[19] Chow, L. F., Zhao, F., Liu, X., Li, M. T. and Ubaka, I. (2006), “Transit Ridership Model Based on Geographically Weighted Regression,” Journal of the Transportation Research Board, No. 1972, pp. 105-114.
[20] Clark, S. D. (2007), “Estimating Local Car Ownership Models,” Journal of Transportation Geography, Vol. 15, No. 3, pp. 184-197.
[21] Coldren, G. M., Koppelman, F. S., Kasturirangan, K. and Mukherjee, A. (2003), “Modeling Aggregate Air-travel Itinerary Shares: Logit Model Development at a Major US Airline,” Journal of Air Transportation Management, Vol. 9, No. 6, pp. 361-369.
[22] Corpuz, G., McCabe, M. and Ryszawa, K. (2006), The Development of a Sydney VKT Regression Model, 29nd Australasian Transport Research Forum.
[23] Dmitry, P. (2009), “Statistical analysis of the relationship between public transport accessibility and flat prices in Riga”, Munich Personal RePEc Archive, Vol. 10, No. 2, pp. 26-32.
[24] Fotheringham, A. S. and Charlton, M. E. (1998), “Geographically Weighted Regression: a Natural Evolution of the Expansion Method for Spatial Data Analysis,” Environment and Planning A, Vol. 30, pp. 1905-1927.
[25] Fotheringham, A. S., Brunsdon, C. and Charlton, M. E. (2002), Geographically Weighted Regression, Wiley, Chichester.
[26] Fotheringham, A. S., Charlton, M. E. and Brunsdon, C. (2000), Quantitative Geography, London: Sage.
[27] Gomez-Ibanez’ and Jose, A. (1996), “Big-city Transit, Ridership, Deficits, and Politics,” Journal of the American Planning Association, Vol. 62, No. 1, pp. 30-50.
[28] Kitamura, R. (1989), “A Causal Analysis of Car Ownership and Transit Use,” Transportation, Vol. 16, No. 2, pp. 155-173
[29] Messenger, T. and Ewing, R. (2007), “Transit-Oriented Development in the Sun Belt,” Journal of the Transportation Research Board, No. 1996, pp. 145-153.
[30] Mulley, C. and Tanner, M. (2009), The Vehicle Kilometres Travelled by Private Car: A Spatial Analysis using Geographically Weighted Regression, 32nd Australasian Transport Research Forum.
[31] Sun, W. X., Song, T. and Zhong, H. (2009), “Study on Bus Passenger Capacity Forecast based on Regression Analysis including Time Series,” 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, China, 11-12 April.
[32] Swimmer, C. R. and Klein, C. C. (2010), “Public Transportation Ridership Levels,” Journal for Economic Educators, Vol. 10, No. 1, pp. 40-46.
[33] Taylor, B. D. and Fink, C. N. Y. (2003), “The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature”, UCLA Department of Urban Planning.
[34] Taylor, B. D., Miller, D., Iseki, H. and Fink, C. (2009), “Nature and/or Nurture? Analyzing the Determinants of Transit Ridership across US Urbanized Areas,” Transportation Research Part A, Vol. 43, No. 1, pp. 60-77.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top