跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鈞傑
研究生(外文):Chang, Chun-Chieh
論文名稱:氮化鋁薄膜應用於氮化鎵發光二極體元件之特性研究
論文名稱(外文):Investigation of GaN-based Light-Emitting Diodes with AlN Film
指導教授:郭政煌紀國鐘紀國鐘引用關係
指導教授(外文):Kuo, Cheng-HuangChi, Gou-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:氮化鋁電流阻擋層側壁鈍化層電流散佈
外文關鍵詞:AlNCurrent blocking layerSidewall passivation layerCurrent spreading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文為將氮化鋁薄膜應用於氮化鎵發光二極體元件之特性研究,元件結構分別為電流阻擋層(CBL)及鈍化層(Passivation layer),並且與傳統使用二氧化矽薄膜之元件相互比較其光電特性差異。
本實驗採用的是濺鍍(Sputtering)系統來成長薄膜。由穿透率量測可知,氮化鋁薄膜在可見光區域皆有90%以上穿透率,並可藉由顯影液對氮化鋁薄膜之蝕刻速率測試,得知氮化鋁薄膜在氮氣環境下熱處理一分鐘後,因晶格品質獲得改善,使薄膜抵抗顯影液蝕刻能力上升,以上實驗也證明了將氮化鋁薄膜應用於後續發光二極體元件實驗之可行性。
接著將氮化鋁薄膜做為發光二極體元件電流阻擋層,首先由電壓-電流(I-V)量測可知氮化鋁薄膜相較二氧化矽薄膜有較高的串聯電阻值,並且隨著薄膜厚度上升而增加,在氮化鋁厚度1800Å時,其20mA注入下所對應發光二極體光輸出功率較傳統結構增加了8%,光輸出功率增加的原因可歸因於電流阻擋層有效減少了電流流經p型電極下方區域的機率,使光被電極遮蔽的現象獲得改善。
本論文接著研究氮化鋁薄膜做為發光二極體元件側壁鈍化層,由熱處理實驗可知,熱處理製程雖然可以減少元件之漏電流,但同時也使發光二極體光輸出功率較傳統結構下降了約9%,光輸出功率下降的原因可歸因於側壁鈍化層區域薄膜穿透率下降所致。
最後本論文利用顯影液將經過熱處理之氮化鋁鈍化層去除,在20mA注入下,光輸出功率較傳統結構增加了約11%,光輸出功率增加的原因可歸因於位於發光二極體高台周圍之ITO薄膜電阻率上升,以及側壁阻值變化,使電流集中於未覆蓋氮化鋁薄膜之區域,產生類似電流阻擋層的效果,改善了發光二極體n型電極區域的電流散佈所致。

In this study, we examined the characteristics for the application of AIN thin films on GaN light-emitting diode (LED) devices. The devices structure contained a current blocking layer (CBL) and a passivation layer. We also compared the differences in optical and electrical properties between this devices structure and devices that traditionally employing silicon dioxide thin films.
We used the sputtering system to grow thin films. Transmittance measurements indicated that the AIN thin film had a transmittance of above 90% in the visible light region. Additionally, a developer was used to test the etch rate of the AIN thin films. The results of this test indicated that after heat treatment in a nitrogen atmosphere for 1 min, the resistance of the AIN thin film to the developer etching increased because of improvements in lattice quality. The experiments also confirmed the feasibility of employing AIN thin films in follow-up experiments on LED devices.
Next, we used the AIN thin film as the CBL in the LED. First, current-voltage (I-V) curve indicated that AIN thin films had higher series resistance values compared to that of the silicon dioxide thin films. These values increased with increases in the thin-film thickness. With an AIN thickness of 1800 Å, the corresponding LED light output power with 20 mA injection increased by 8% compared to the conventional LED. The light output power increased because the CBL effectively reduced the probability of the current flowing through the area under the p-type electrode. This improved the phenomenon of the electrode masking the light.
Next, we investigated the use of AIN thin films as the sidewall passivation layer for LED devices. Heat treatment experiments indicated that although the heat treatment process can reduce the leakage current in the components, it also reduces the LED’s light output power by approximately 9% compared to the conventional LED. The decrease in light output power was caused by a decline in the thin-film transmittance in the sidewall passivation layer area.
Finally, we used the developer to remove the heat-treated AIN passivation layer. The light output power with 20 mA injection increased by approximately 11% compared to that of the conventional LED. The light output power increased because the resistivity of the ITO thin film located in the area surrounding the LED mesa increased and the sidewall resistance value changed. This caused the current to concentrate in the area not covered by the AIN thin film, generating an effect similar to that of the CBL. This effect improved the current spreading in the LED n-type electrode area.

摘要 ...............................................................i
Abstract .........................................................iii
誌謝 ...............................................................v
目錄 ..............................................................vi
表目錄.............................................................ix
圖目錄.............................................................xi
第一章 序論 ........................................................1
1.1 前言 .........................................................1
1.2 研究動機與目的 ...............................................1
第二章 實驗原理與量測系統 ..........................................3
2.1 實驗原理 .....................................................3
2.1.1 濺鍍原理 .................................................3
2.1.2 傳輸線模型原理 ...........................................4
2.1.3 霍爾效應 .................................................4
2.2 實驗量測系統 .................................................5
2.2.1 掃瞄電子顯微鏡 ..........................................5
2.2.2 穿透率量測系統 ..........................................6
2.2.3 電壓-電流量測系統 .......................................6
2.2.4 發光二極體光輸出量測系統 ................................6
2.2.5 發光二極體二維光強度影像分佈量測系統.....................7
第三章 氮化鋁薄膜之製程及分析.......................................8
3.1 氮化鋁薄膜製程 ...............................................8
3.1.1 試片清洗 ................................................8
3.1.2 濺鍍製程 ................................................9
3.1.3 熱處理製程 .............................................10
3.2 氮化鋁薄膜特性研究...........................................10
3.2.1 濺鍍功率與製程壓力對氮化鋁薄膜厚度之影響 ...............10
3.2.2 熱處理對氮化鋁薄膜光學性質之影響 .......................10
3.2.3 熱處理對氮化鋁薄膜表面形貌之影響 .......................12
3.2.4 氮化鋁薄膜X-Ray繞射頻譜分析.............................13
3.2.5 熱處理對氮化鋁薄膜蝕刻速率之分析 .......................14
3.3結論與分析 ...................................................15
第四章 氮化鋁薄膜應用於氮化鎵發光二極體電流阻擋層之製程及特性研究..16
4.1 氮化鋁與二氧化矽薄膜在p型氮化鎵上之傳輸線製程 ...............16
4.2 氮化鋁與二氧化矽薄膜應用於氮化鎵發光二極體電流阻擋層之製程...19
4.3 具電流阻擋層之氮化鎵發光二極體光電特性研究...................21
4.3.1 氮化鋁與二氧化矽電流阻擋層在p型氮化鎵上之電流-電壓特
性分析..................................................21
4.3.2 氮化鋁電流阻擋層發光二極體光電特性研究 .................22
4.3.3 二氧化矽電流阻擋層發光二極體光電特性研究 ...............23
4.4 結論與分析 ..................................................25
第五章 氮化鋁薄膜應用於氮化鎵發光二極體側壁鈍化層之製程及特性研究..26
5.1 氮化鋁與二氧化矽薄膜應用於氮化鎵發光二極體側壁鈍化層
之製程 ......................................................26
5.2 具側壁鈍化層之氮化鎵發光二極體光電特性研究 ..................28
5.2.1 未經熱處理之側壁鈍化層發光二極體光電特性研究 ...........28
5.2.2 經熱處理後側壁鈍化層發光二極體光電特性研究 .............31
5.2.3 將位於側壁之氮化鋁薄膜去除後發光二極體光電特性研究......32
5.3 結論與分析...................................................39
第六章 結論與未來展望 .............................................41
6.1 結論 ........................................................41
6.2 未來展望 ....................................................42
參考文獻 ..........................................................44
[1] S. Nakamura, Science, “The roles of structural imperfections in InGaN -based blue light emitting diodes”, Science, 281, pp.956 (1998).
[2] T. Mukai, M. Yamada, S. Nakamura, “Characteristics of InGaN imperfection in InGaN-based UV/blue/green/amber/red light-emitting diodes”, Jpn. J. Appl. Phys., 38, pp.3976 (1999).
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, “room-temperature continuous -wave operation of InGaN multi-quantumwell structure laser diodes with a lifetime of 27 hours”, Appl. Phys. Lett., 70, pp.17 (1997).
[4] W. S. Tan, Valerie Bousquet, Matthias Kauer, Koji Takahashi, Jonathan Heffernan, “InGaN-based blue-violet laser diodes using AlN as the electrical insulator”, Jpn. J. Appl. Phys., 48, 072102 (2009).
[5] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE ELECTRON DEVICE LETTERS, 22, pp.10 (2001).
[6] E. Fred Schubert, LIGHT-EMITTING DIODES, second edition, p.41-p.44
[7] 施敏, 半導體元件物理與製作技術, p.96
[8] I.H. Kim, S.H. Kim, “Effects of ion beam irradiation on the properties and epitaxial growth of aluminium nitride film by the ion beam assisted deposition process”, Thin Solid Films, 47, pp.253 (1994).
[9] H.Y. Joo, H.J. Kim, S.J. Kim, S.Y. Kim, “Spectrophotometric analysis of
aluminum nitride thin films”, J. Vac. Surf. Film, A 17(3), pp.862(1999).
[10] J. P. Kar, G. Bose, S. Tuli, “Effect of annealing on DC sputtered aluminum
nitride films”, Surface &Coatings Technology, 198, p.p.64 (2005).
[11] J.R. Mileham, S.J. Pearton, C.R. Abernathy,J.D. MacKenzie,R.J. Shui, S.P.
Kilcoyne, “Wet chemical etching of AlN”, Appl. Phys. Lett, 67, pp.21(1995).
[12] 呂育聰,“利用電流阻隔層及鈍化層的研究來改善氮化鎵藍光二極體的發光效率”,國立成功大學,碩士論文,民國97年。
[13] X. Guo , E. F. Schubert, “Current crowding and optical saturation effects in GaIn/GaN light-emitting diodes grown on insulating substrates ”, Appl. Phys. Lett, 78, 21 (2001).
[14] I. Hamberg, C. G. Granqvict, “Band-gap widening in heavily Sn-doped In2O3”, Phys. Rev. B , 30, 6 (1984).
[15] J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee,C. C. Sun, “Electrical-optical analysis of a GaN/sapphire LED chip byconsidering theresistivity of the current-spreading layer” , Opt. Rev., 16, 2 , pp. 213-215, (2009).
[16] H. Kim, K. K. Kim, K. K. Choi, J. O. Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry” , Appl. Phys. Lett., 91, pp. 023510-1–023510-3, (2007).
[17] 蔡宗元,“增進發光二極體電流分佈技術之研究”,國立成功大學,碩士論文,民國99年。
[18] S. M. Kim, Y. M. Yu, J. H. Baek, S. R. Jeon,H. J. Ahn, J. S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes” ,J Electronchem Soc, 5, 154, pp. H384-H388, (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊