跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉聖文
研究生(外文):Yeh, Sheng-Wen
論文名稱:含鈧鋁合金銲接熱裂性質研究
論文名稱(外文):The Study Of Hot Cracking On The Scandium–Aluminum Alloys
指導教授:周長彬周長彬引用關係
指導教授(外文):Chou, Chang-Pin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院精密與自動化工程學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:含鈧鋁合金熱裂銲接熱循環應變量
外文關鍵詞:Scandium–Aluminum AlloysHot CrackingWeldingThermal CyclesStrains
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討針對M6、M7E、M7B、M9H4 之含鈧鋁合金,施以不同次數之惰氣鎢極電弧銲,在不使用填料之情況下,利用點銲可調應變試驗(Spot Varestraint Test) 機,來探討在不同之熱循環(number of thermal cycles) 次數與不同之外加應變量下其銲接熱裂縫敏感性。利用立體顯微鏡觀察熱裂紋與影像擷取軟體計算裂紋長度,配合光學顯微鏡觀察與掃描式電子顯微鏡(SEM) 觀察裂縫形成之微觀組織與不同含鈧(Sc) 量之含鈧鋁合金銲接熱裂縫敏感性之比較。
分析結果顯示M6、M7B、M9H4 含鈧鋁合金在不同之外加應變量下,其熔融區之熱裂縫總長度不會隨著熱循環次數之增加而增加,但會隨著應變量之加大而增加。熱裂敏感性比較,在不同外加應變量及熱循環次數下之量測結果,依序是M6 裂縫總長度最長,M7B與M7E 在一次及二次熱循環中熱裂敏感性相近,M9H4 則為最小。即M9H4>M7E>M7B>M6。
裂縫破斷面微結構組織上,在熔融區均觀察到三個明顯區域,樹枝狀區(D區)、樹枝-平滑轉換區(D-F區)與平滑區(F區),此可證明熔融區均屬於凝固熱裂機構;在熱影響區均為沿晶脆性破壞之液化熱裂機構。部分熔融區處經EDS分析,發現M7B、M7E 含鈧鋁合金並未出現含有成份Cu、Mg 之偏析現象,屬單純的晶界液化。M6與M9H4二種合金金屬在晶界附近均有相當大的Cu偏析現象,且隨著熱循環次數增加而加劇。因此,M6與M9H4二種合金在部分熔融區均為偏析熱裂。
The “Spot-Varestraint Test” was applied to assess the sensitivity of four scandium–aluminum alloys –M6, M7E, M7B and M9H4 – to hot cracking from welding. In these experiments we applied Gaseous Tungsten Arc Welding (GTAW) without an added feeder. Samples with varied thermal cycles and with one or two welding energy inputs on the same welding seam were prepared, The stereoscopic microscope is used to observe hot cracking and the software for computer image acquisition and analysis measurement are used to measure and to analyze the length of hot cracks in the fusion and the heat-affected zones with varied augmented applied strains and thermal cycles. The optical microscopy (OM) and scanning electron microscopy (SEM) to observe the microstructure of crack formation with different amount of scandium the containing scandium aluminum for welding hot crack sensitivity.
The results indicate that the number of cracks increases with increasing augmented strain. This phenomenon occurs in both the fusion and the heat-affected zones. The number of thermal cycles also has a significant influence on the heat-affected zone; the number of hot cracks increases, especially in the heat-affected zone of the metal weld, with increasing number of thermal cycles. The hot cracking sensitivity under different augmented strain and number of the thermal cycles shows that the crack length of M6 is the length, M7B and M7E an similar in the hot cracking sensitivity, the M9H4 is the shortest. The compositions of these four alloys show that M6, M7B and M7E have similar tendencies to be subject to hot cracking, greater than M9H4. With increasing number of thermal cycles, the hot cracks show the same tendency, M9H4 > M7E> M7B> M6.
On cracking fracture surface, the experiment results show three distinct regions in the fusion zone, dendritic area (D area), dendritic-flat area(D-F area) and the flat area (F area), to confirmed the fusion zone belong to the solidification cracking. In the heat affected zone, the results indicate the brittleness fracture phenomenon along grain boundary on the fracture surface, and it is presented in the form of liquefied hot cracking. The EDS analysis for the partial melting zone shows M7B and M7E does not produce Cu and Mg segregation increases. These two kinds of alloys are purely grain boundary liquation.M6 and M9H4 have the Cu element segregation in the vicinity of grain boundaries, and are the Cu segregation increases with the number of thermal cycles. So that the M6 and M9H4 are segregation-induced liquation mechanism in the partially melted zone.

摘 要..................................................I
ABSTRACT...............................................II
目 錄..................................................V
圖目錄................................................VII
表目錄..................................................X
第一章 緒論............................................1
1.1研究背景與動機.......................................1
1.2研究目的.............................................1
1.3研究方法.............................................2
第二章 文獻探討........................................3
2.1 含鈧鋁合金簡介......................................3
2.1.1 鈧對鋁合金影響之文獻回顧..........................3
2.1.2 添加合金元素Sc 對鋁合金之影響.....................7
2.1.2.1 含Sc 鋁合金之凝固行為...........................7
2.1.2.2 Sc 對再結晶現象之影響...........................8
2.1.2.3 Sc 對機械性質之影響.............................9
2.2 鋁合金之銲接性.....................................10
2.3 鋁合金銲接缺陷 .....................................11
2.3.1 氣孔(Porosity)...................................11
2.3.2 熱裂.............................................14
2.3.3 凝固熱裂機構 .....................................15
2.3.4 影響凝固熱裂的因素...............................19
2.3.5 液化熱裂機構.....................................20
2.3.6 鋁合金銲接熱裂縫.................................21
2.3.7銲接熱裂縫之可調式應變試驗........................22
2.4 鋁合金銲接熱裂性分析...............................25
2.4.1 熱循環次數與熱裂敏感性之關係.....................25
4.1.1-1 熔融區.........................................25
4.1.1-2 熱影響區.......................................25
4.1.3 不同材料之熱裂敏感性比較.........................32
第三章 實驗方法與步驟................................36
3.1 熱裂性實驗.........................................36
3.1.1 實驗材料.........................................36
3.1.2 試片製作.........................................38
3.1.3 可調式應變試驗應變量之參數設定...................41
3.1.4 熱裂縫觀察與計算.................................43
3.1.5 金相顯微觀察.....................................43
3.1.6 破斷面SEM 觀察與EDS 分析.........................45
第四章 實驗結果與討論.................................46
4.1 含鈧鋁合金銲接熱裂性分析...........................46
4.1.1 鋁鈧鋁合金熱裂敏感性.............................46
4.1.2 含鈧鋁合金熱裂敏感性與不同熱循環次數之關係.......49
4.1.2.1 熔融區.........................................49
4.1.2.2 熱影響區.......................................54
4.1.2.3外加應變量對熱裂敏感性的影響....................58
4.1.2.4 不同含鈧鋁合金之熱裂敏感性比較.................61
4.1.2.5 SEM 觀察及EDS 分析.............................63
第五章 結論............................................72
參考文獻...............................................74

1. R. R. Sawtell. and C. L. Jensen., Metall. Trans., Vol. 21, 1990,
p.421
2. R. R. Sawtell. Ph.D. thesis. University of California at Berkeley,
1988.
3. E. L. Bradley, Ph.D. thesis University of California at Berkeley,
1990.
4. F. Norman, P.B. Prangnell and R.S. Mcewen, Acta Mater., Vol. 46,
1998, p. 5715.
5. K.A. Gschneidner and F.W. Caiderwood, Bull. Alloy Phase
Diagr., Vol. 10, 1989, p.34.
6. E.A. Marquis and D. N. Seidman, Acta Mater., vol.49, 2001,
p.1909.
7. B.A. Parker, Z.F. Zhou and P. Nolle, Journal of Materials Science,
Vol. 30, 1995, p. 452.
8. E.A. Marquis and D.N. Seidman, Acta Mater., Vol. 49, 2001, p.1909.
9. http://www.scandium.org/Sc-Al.html
10. V.G. Davhdov, T.D. Rostova, V.V. Zakharov, Yu.A. Filatov and V.I.
Yelagin, Mater. Sci. Eng., Vol. 280, 2000, p.30.
11. G.M. Novotny and A.J. Ardell, Mater. Sci. Eng., Vol. 318, 2001,
p. 144.
12. T.D. Rostova, V.G. Davydov, V.I. Yelagin and V.V. Zakharov,
Mater. Sci. Forum., Vols. 331-337, 2000.
13. Y.V. Milman, D.V. Lotsko and O.I. Sirko, Mater. Sci. Forum, Vols.
p. 1107.
14. Verhoven, Physical Metallurgy, 1974, p. 363.
15. E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution
of Al3Sc precipitation in Al(Sc) alloys”, Acta Mater., vol.49,
2001, pp.1909-1919.
16. V.G. Davydov, T.D. Tostove, V.V. Zakharov, Y.A. Filatov, and
V.I. Yelagin, Materials Science and Engineering A, Vol. A280,
2000, p. 30.
17. M.C. Flemings, Solidification Processing. McGraw-Hill, New York,
1974.
18. P.S. Mohanty and J.E. Gruzleski, Acta metal. mater., Vol. 43,
1995, p. 2001
19. D.G. McCartney, Int. Mater. Rev., Vol. 34, 1989, p. 247.
20. L.M. Brown and R.K. Ham, in Strengthening Methods in Crystals,
A. Kelly and R.B. Nicholson. Halsted press, New York, 1971.
21. P.J. Gregson and H.M. flowers, Acta metal., Vol. 33, 1985,
p. 527.
22. A.F. Norman, P.B. Prangnell and R.S. McEwen, Acta mater. Vol. 46,
No. 16, 1998, p.5715.
23. K.A. Gschneidner and F.W. Caiderwood, Bull. Alloy Phase Diagr.,
Vol. 10, 1989, p. 34.
24. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, T.V. Dobatkina,
Advanced Aluminum Alloys Containing Scandium structure and
Properties, Gordon and Breach Science Publishers, 1998.
25. L.S. Kramer, W.T. Tack, M.T. Fernandes, Vol. 10, 1997, p.23.
26. Z. Yin, Q. Pan, Y.H. Zhang, F. Jiang, Materials Science and
Engineering, Vol. 280, 2000, p.151.
27. "Applications of Scandium in Al-Sc Alloys", Scandium 94
Conference, Moscow, 1994
28. Bob Irving, "Welding the Four Most Popular Aluminum Alloys",
Welding Journal , February 1994, 51-55.
29. A. K. Vasudevan, R. D. Doherty,Aluminum
Alloys-Contemporary Research and Applications , Acadmic
Press, Inc. 1989.
30. J. B. Arthur, "Fusion Welding of 245-T3 Aluminum Alloy",
Welding Journal,1955, 558-569.
31. R. A. Woods, "Porosity and Hydrogen Absorption in Aluminum
Welds",Welding Journal , March 1974, 97-180.
32. M. Mazur, "Porosity in Aluminum Welds", Welding International ,
1992,6(12), 929-931.
33. D. V. Wilcox et. al., Welding Aluminum , AWS 6th, 1972.
34. 姜志華編著,「鋁合金電弧銲接及硬軟銲應用技術」,徐氏基金會出版,
1995。
35. R. F. Ashton, R. P. Wesley and C. R. Dixon, "The Effect of
Porosity on 5086-H116 Aluminum Alloy Welds", Welding Journal ,
March 1975, 95-98.
36. R. J. Shore & R. B. Mccauley, "Effect of Porosity on High
Strength Aluminum 7039", Welding Journal , July 1970, 311-336.
37. J. E. Hatch, Aluminum: Properties and Physical Metallurgy , ASM
Metals Park, Ohio, 1984
38.江家慶、王星豪,「銲接熱裂縫之理論與機制」,銲接與切割,
第 10 卷第 2 期,2000。
39. F. Matsuda, "Hot Crack Susceptibility of Metal, Advances
in Welding Metallurgy ", JWS, 1990, 26-58.
40. J. C. Borland, Welding and Metal Fabrication,“Fundamentals of
solidification cracking in welding”,Welding and metal
Fabrication,47(1), 19-29,99-107,1977.
41. 楊智綱,「高強度航空用 7000 系鋁合金機械性質、抗應力腐蝕破壞性及銲
接熱影響區特性之研究」,國立中央大學機械工程研究所,博士論文,
2001。
42. J. E. Steenbergen and H. R. Thornton, "A Quantitative
Determination of the conditions for Hot Cracking During Welding
for Aluminum Alloys",Welding Journal , February 1970, 61-68.
43. 郭飛虎,「2024, 2219 及 6061 高強度鋁合金的銲接性研究」,銲接與切
割,第 6 卷第 2 期,1996。
44. 林澄貴,「探討銲接收縮及變形」,機械月刊,第九卷第九
期,1983。
45. Sindo Kou, Welding Metallurgy , John Wiley and Sons, New
York, 1987.
46. ASM. Metals Handbook . volume 6-Welding, Brazing, and Soldering,
1993,528-540~722-739.
47. J. R. Davis., Aluminum and Aluminum Alloys-ASM Specialty
Handbook .ASM International, 1993, 376-419.
48. 鄭慶民,「熱處理型鋁合金銲接性之研究」,國立交通大學
機械工程研究所,博士論文,2004。
49. John E. Hatch, Aluminum Properties and Physical Metallurgy ,
American Society for Metals, pp. 224-241, 1984.
50. Kaiser, Welding Kaiser Aluminum , 1st Ed., Kaiser Aluminum &
Chemical Scales, Inc., 1984.
51. Savage, W. F. and Lundin, C. D. idid 44: 443, 1965.
52. Lundin, C. D., Delong, W.T., and Spond, D.F. "The Fissure Bend
Test", Welding Journal , June 1976, 145-151.
53. N. F. Gittos and M. H. Scott "Heat-affect Zone Cracking of Al-Mn-
Si Alloy" ibid, June 1981, 95-103.
54. Liptax, J. A., and Baysinger, F. R. ibid, 47:173, 1968.
55. Lundin, C. D., A. C. Lingenfelter, G. E. Grptle, G. G. Lessmann
and S. J. Matthews, "The Varestraint Test", WRC Bulletin 280 ,
August 1980.
56. J. B. Arthur, "Fusion Welding of 24S-T3 Aluminum Alloys", Welding
Journal , 1955, 558-569.
57. J. H. Dudas and F. R. Collins, "Preventing Weld Cracks in High-
Strength Aluminum Alloys", Welding Journal , June 1966, 241-249.
58. 周長彬,蘇程裕,蔡丕樁,郭央諶,銲接學(修訂版),全華
圖書,2008
59. S. Kou, Welding Metallurgy, 2nd ed, John Wiley & Sons, 2003.
60. H.B. Cary, Modern Welding Technology, 3rd ed, Prentice-Hall,
Englewood Cliffs, 1994.
61. 王振欽,銲接學,高立圖書,台北,1997
62. R.M. Nunes, B.L. Alia, R.L. Alley, and J. William R. Apblett,
Welding, Brazing, and Soldering, Vol. 6, 10th ed, ASM
Handbook,ASM InternationalTM, Metal Park, OH, 1993.
63. H.Y. Huang and C.P. Chou, "A Study on the TIG-Flux
Processing Technology of Stainless Steel", National Chiao Tung
University, Ph.D., 2005
64. "Guidlines for Gas Tungsten Arc Welding (GTAW)", Miller
Welds, 2008.

65. S.Y. Lee and S.J. Na, "Numerical Analysis of a Stationary Gas
Tungsten Welding Arc Considering Various Electrode Angles",
Welding Journal (Miami, Fla), 75(9), pp. 269-279, 1996.
66. J. N. DuPont, C. V. Robino, A. R. Marder, "Modelling Mushy Zones
in Welds of Multicomponent Alloys: Implications for
Solidification Cracking ", Sci. Technol. Weld. Joining , 4, 1999,
1-14.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top