跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃秋淵
論文名稱:奈米點陣列的尺寸對神經膠細胞調控神經細胞增生的影響
論文名稱(外文):The sizes of nanodot array influence glial regulation on neuronal proliferation
指導教授:黃國華黃國華引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:21
中文關鍵詞:神經細胞
外文關鍵詞:neuron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
Traditionally regarded as supporting cells, glia cells are structurally and functionally poised as ideal sensors and regulators of local microenvironments. Emerging evidence suggests that glia have key roles in regulating neuronal development. The differentiated type of neuroblastoma glioma hybrid cell line, NG108-15, has widely used in in vitro studies instead of primary-cultured neurons. We culture NG108-15 cells on different sizes of nanodot arrays to examine how glia cells sense nanoenvironment stimulis and regulate neuronal development. Here we show that different nanodot size arrays change the number of neuroblastoma cells on unit area of glioma cells. Our results show that glia can sense nanoenvironment stimulis and response in different regulation of neuronal development. By examining gene expression, nanodot sizes also influence glia-mediated neuronal factor, such as Wnt3 and BDNF. Our results show that glia can sense nanoenvironment stimulis and response in different regulation of neuronal development. The nanodot arrays can serve as an appropriate tool for investigating glia-neuron interactions.
Traditionally regarded as supporting cells, glia cells are structurally and functionally poised as ideal sensors and regulators of local microenvironments. Emerging evidence suggests that glia have key roles in regulating neuronal development. The differentiated type of neuroblastoma glioma hybrid cell line, NG108-15, has widely used in in vitro studies instead of primary-cultured neurons. We culture NG108-15 cells on different sizes of nanodot arrays to examine how glia cells sense nanoenvironment stimulis and regulate neuronal development. Here we show that different nanodot size arrays change the number of neuroblastoma cells on unit area of glioma cells. Our results show that glia can sense nanoenvironment stimulis and response in different regulation of neuronal development. By examining gene expression, nanodot sizes also influence glia-mediated neuronal factor, such as Wnt3 and BDNF. Our results show that glia can sense nanoenvironment stimulis and response in different regulation of neuronal development. The nanodot arrays can serve as an appropriate tool for investigating glia-neuron interactions.
1. Introduction 1
2. Materials and methods 3
2.1 Fabrication of the nanodevice/matrix of nanodot arrays 3
2.2 Cell culture 3
2.3 Scanning electron microscopy 3
2.4 Immunostaining of vinculin and phalloidin 4
2.5 Statistics 5
3. Result and discussion 7
3.1 Fabrication of an integrated nanodot array device 7
3.2 Different morphological changes of NG108-15 on nanodot arrays 7
3.3 The sizes of nanodot influence glia-neuron interaction 8
3.4 The sizes of nanodot array also influence processes of glioma cells 9
4. Conclusion 11
Reference 20
1. N. O. Glebova, D. D. Ginty, Annu. Rev. Neurosci. 28, 191 (2005).
2. W. Qin, W. A. Bauman, C. Cardozo, Annals of the New York Academy of Sciences 1211, 66 (2010).
3. K. D. Anderson, Journal of neurotrauma 21, 1371 (2004).
4. J. H. Kim et al., Nature 418, 50 (2002).
5. M. Fava, K. S. Kendler, Neuron 28, 335 (2000).
6. M. Goedert, M. Spillantini, R. Jakes, D. Rutherford, R. Crowther, Neuron 3, 519 (1989).
7. A. M. Taylor et al., Nature methods 2, 599 (2005).
8. C. Chalfoun, G. Wirth, G. Evans, Journal of Cellular and Molecular Medicine 10, 309 (2006).
9. M. Nedergaard, B. Ransom, S. A. Goldman, TRENDS in Neurosciences 26, 523 (2003).
10. E. M. Ullian, K. S. Christopherson, B. A. Barres, Glia 47, 209 (2004).
11. T. W. Wang, H. Zhang, J. M. Parent, Development 132, 2721 (2005).
12. T. Ueki et al., The Journal of neuroscience 23, 11732 (2003).
13. J. P. Kaiser, A. Reinmann, A. Bruinink, Biomaterials 27, 5230 (2006).
14. M. M. Stevens, J. H. George, Science 310, 1135 (2005).
15. G. A. Silva et al., Science 303, 1352 (2004).
16. M. Schindler, I. Ahmed, J. Kamal, Biomaterials 26, 5624 (2005).
17. E. Cukierman, R. Pankov, K. M. Yamada, Current opinion in cell biology 14, 633 (2002).
18. V. Brunetti et al., Proceedings of the National Academy of Sciences 107, 6264 (2010).
19. E. Cavalcanti-Adam et al., Biophysical journal 92, 2964 (2007).
20. C. Choi, S. Hagvall, B. Wu, J. Dunn, R. Beygui, Biomaterials 28, 1672 (2007).
21. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Biomaterials 26, 2603 (2005).
22. B. Zhu et al., Biomaterials 25, 4215 (2004).
23. P. Wang, L. Li, C. Zhang, Q. Lei, W. Fang, Biomaterials 31, 6201 (2010).
24. C. Xie et al., Nano Letters, 273.
25. N. Fredin, A. Broderick, M. Buck, D. Lynn, Biomacromolecules 10, 994 (2009).
26. S. Shankar, L. Rizzello, R. Cingolani, R. Rinaldi, P. Pompa, ACS nano 3, 893 (2009).
27. F. Johansson, P. Carlberg, N. Danielsen, L. Montelius, M. Kanje, Biomaterials 27, 1251 (2006).
28. C. H. Choi et al., Biomaterials 28, 1672 (2007).
29. J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nano Letters 7, 1686 (2007).
30. Y. C. Hung, H. A. Pan, S. M. Tai, G. S. Huang, Lab Chip 10, 1189 (2010).
31. C. T. Wu, F. H. Ko, H. Y. Hwang, Microelectronic engineering 83, 1567 (2006).
32. D. Lie et al., NATURE-LONDON- 7063, 1370 (2005).
33. P. M. Lledo, M. Alonso, M. S. Grubb, Nature Reviews Neuroscience 7, 179 (2006).
34. D. K. Ma, G. Ming, H. Song, Current opinion in neurobiology 15, 514 (2005).
35. H. Scharfman et al., Experimental neurology 192, 348 (2005).
36. C. Rossi et al., European Journal of Neuroscience 24, 1850 (2006).
37. P. Mohapel, H. Frielingsdorf, J. Haggblad, O. Zachrisson, P. Brundin, Neuroscience 132, 767 (2005).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top