跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王韋傑
研究生(外文):Wang, Wei-Chieh
論文名稱:使用變溫砷介面層以成長砷化鎵磊晶層於鍺/矽基板上對三五族太陽能電池之應用
論文名稱(外文):Growth of GaAs epitaxy on Ge/Si substrate using graded-temperature arsenic prelayer for III-V solar cells application
指導教授:張翼張翼引用關係
指導教授(外文):Chang, Yi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:82
中文關鍵詞:砷化鎵/鍺反相邊界反相疇砷界面層
外文關鍵詞:GaAs/Geantiphase boundariesantiphase domainsAs prelayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文以變溫砷介面層(300~420 °C)成長砷化鎵磊晶層於矽/鍺基板上。由實驗結果證實,變溫砷介面層成長在經由650 °C退火後矽/鍺基板不僅可有效改善隨後成長之砷化鎵磊晶層表面形貌(Rms: 1.1 nm)亦可減少反向疇(APDs)產生,使砷化鎵磊晶層缺陷密度降低至2 × 107 cm-2。由於變溫砷介面層中砷原子與矽/鍺基板中鍺原子間鍵結能(bonding energy)較弱及低五三比(V/III: 20)的使用,使砷化鎵磊晶層與鍺磊晶層間不必要的原子擴散現象被有效抑制。這些研究成果皆證實變溫砷介面層對欲成長於矽基板上之三五族奈米電子元件及光電元件將具有極大的發展潛力。
The growth of GaAs epitaxy on Ge/Si substrates with an arsenic prelayer grown with graded temperature ramped from 300 to 420 °C is investigated. It is demonstrated that the graded-temperature arsenic prelayer grown on a Ge/Si substrate annealed at 650 °C not only improves the surface morphology (roughness: 1.1 nm) but also reduces the anti-phase domains’ (APDs) density in GaAs epitaxy (dislocation density: ~2 × 107 cm-2). Moreover, the unwanted interdiffusion between Ge and GaAs epitaxy is suppressed by using the graded-temperature arsenic prelayer due to the low energy of the Ge-As bond and the use of a low V/III ratio of 20. These results suggest that the graded-temperature As prelayer grown on Ge/Si substrate has great potential for use in the growth of III-V nanoelectronic devices and optoelectronic devices on the Si substrate.
Chapter 1
Introduction 1
1.1 Types of solar cells 1
1.2 III-V compound solar cells 4
1.3 Improvement of III-V compound solar cells 5
Chapter2
Literature Review 8
2.1 Integration of GaAs epitaxy on Ge/Si substrate 8
2.1.1 Material characteristics of GaAs on Ge/Si substrates 8
2.2 Antiphase domains (APDs) formation 9
2.2.1 Use of a high-growth-temperature technique 10
2.2.2 Use of misoriented substrates 12
2.2.3 Use of the substrate annealing process 13
2.3 Interdiffusion of Ge, Ga, and As atoms 16
2.3.1 Suppression of interdiffusion using low growth temperature technique 17
2.3.2 Suppression of interdiffusion using prelayer 18
2.4 Motivation 20
Chapter 3
Experimental process 34
3.1 LP-MOCVD (Low-pressure Metalorganic Chemical Vapor Deposition) 34
3.1.1 Gas handling system 34
3.1.2 Reactor chamber 35
3.1.3 Pyrolysis detector, exhaust system and safety apparatus 36
3.2 MOCVD growth mechanisms 36
3.2.1 Thermodynamically limited growth regime 36
3.2.2 Mass transport limited growth regime 37
3.2.3 Surface kinetics limited growth regime 37
3.2.4 Reaction mechanism of GaAs epitaxy 38
3.3 Experimental details 38
3.4 Material characterizations 39
3.4.1 X-ray diffraction (XRD) 40
3.4.2 Scanning electron microscopy (SEM) 42
3.4.3 Transmission electron microscopy (TEM) 44
3.4.4 Atomic force microscopy (AFM) 45
3.4.5 Secondary ion mass spectrometer (SIMS) 46
3.4.6 Optical Microscope (OM) 48
Chapter 4
Results and discussion 53
4.1 Effect of growth temperatures on GaAs/As on Ge/Si substrate 53
4.2 Effect of III-V ratios on GaAs/As on Ge/Si substrate 54
4.3 Effect of substrate annealing on GaAs/As on Ge/Si substrate 58
4.4 Function of graded-temperature arsenic prelayer on GeAs/Ge/Si heterostructure 60
Chapter 5
Conclusions 77
Reference 78
[1] The Secret World of Energy - The Evolution and Use of the - World's Energy Systems, by McLamb
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop “Solar cell efficiency tables (Version 38)”, progress in photovoltaics: research and applications, Prog. Photovolt: Res. Appl., 565–572 (2011)
[3] H. kroemer, “Polar-on-nonpolar epitaxy”, J. Cryst. Growth, Volume 81, Issues 1-4, 193-204 (1987)
[4] L. Bobb, H. Holloway, K. Maxwell and E. Zimmerman, “Growth of Semiconductors. III. Growth of Gallium Arsenide on Germanium”, J. Appl. Phys. Volume 37, Issue 13, 4687-4693 (1966)
[5] D.B. Holt, “Antiphase boundaries in semiconducting compounds”, J. Phys. Chem. Solids, Volume 30, Issue 6, 1297-1308 (1969)
[6] P. M. Petroff, “Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries”, J. Vac. Sci. Technol. B, Volume 4, Issue 4, 874 - 877 (1986)
[7] Y. Li and L. J. Giling, “A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers”, J. Cryst. Growth, Volume 163, Issue 3, 203-211 (1996)
[8] L. Knuuttila, A. Lankinen, J. Likonen, H. Lipsanen, X. Lu, P. Mcnally, J. Riikonen and T. Tuomi, “Low Temperature Growth GaAs on Ge”, Jpn. J. Appl. Phys., Volume 44, Issue 11, 7777-7784 (2005)
[9] Yuan Li, L. Lazzarini, G. Salviati, “On the sublattice location of GaAs grown on Ge”, J. Appl. Phys., Volume 76, Issue 10, 5748 - 5753 (1994)
[10] Yuan Li, G. Salviati, M.M.G. Bongers, L. Lazzarini, L. Nasi, L. J. Giling, “On the formation of antiphase domains in the system of GaAs on Ge”, J. Cryst. Growth, Volume 163, Issue 3, 195-202 (1996)
[11] L. Lazzarini, L. Nasi, G. Salviati , C.Z. Fregonara , Y. Li b , L.J. Giling, C. Hardingham, D. B. Holt, “Antiphase disorder in GaAs/Ge heterostructures for solar cells”, Micron, Volume 31, Issue 3, 217-222 (2000)
[12] M. K. Hudait, S.B. Krupanidhi, “Atomic force microscopic study of surface morphology in Si-doped epi-GaAs on Ge substrates: effect of off-orientation”, Mater. Res. Bull., Volume 35, Number 6, 909-919 (2000)
[13] R. Fischer, H. Morkoc, D. A. Neumaan, H. Zabel, C. Choi, N. Otsuka, M. Longerbone and L. P. Erichson, “Material properties of high‐quality GaAs epitaxial layers grown on Si substrates”, J. Appl. Phys., Volume 60, Issue 5, 1640-1647 (1986)
[14] P. H. Wu, Y. K. Su, I. L. Chen, S. F. Chen, C. H. Chiou, S. H. Guo, J. T. Hsu, W. R. Chen, “Research of surface morphology in Ga(In)As epilayers on Ge grown by MOVPE for multi-junction solar cells MOVPE for multi-junction solar cells”, J. Cryst. Growth, Volume 298, 767-771 (2007)
[15] M. K. Hudait and S. B. Krupanidhi, “Self-annihilation of antiphase boundaries in GaAs epilayers on Ge substrates grown by metal-organic vapor-phase epitaxy”, J. Appl. Phys., Volume 89, Issue 11, 5972-5979 (2001)
[16] G. L. Luo, Y. C. Hsieh, E. Y. Chang, M. H. Pilkuhn, C. H. Chien, T. H. Yang, C. C. Cheng, and C. Y. Chang, “High-speed GaAs metal gate semiconductor field effect transistor structure grown on a composite Ge/GexSi1−x/Si substrate”, J. Appl. Phys., Volume 101, Issue 8, 084501 (2007)
[17] L. Lazzarini, Y. Li, P. Franzosi , L.J. Giling, L. Nasi, F. Longo, M. Urchulutegui, G. Salviat, “Structural properties of GaAs/Ge heterostructures as a function of growth conditions”, Mater. Sci. Eng. B, Volume 28, Issues 1-3, 502-506 (1994)
[18] M. K. Hudait, S. B. Krupanidhi, J. Electron. Mater. (submitted for publication).
[19] R. M. Sieg, S. A. Ringel, S. M. Ting, E. A. Fitzgerald, and R. N. Sacks, “Anti-phase domain-free growth of GaAs on offcut (001) Ge wafers by molecular beam epitaxy with suppressed Ge outdiffusion”, J. Electron. Mater., Volume 27, Issue 7, 900-907 (1998)
[20] S. Gan, L. Li, M. J. Begarney, D. Law, B.-K. Han, and R. F. Hicks, “Step structure of arsenic-terminated vicinal Ge (100)”, J. Appl. Phys., Volume 85, Issue3 ,2004 - 2006 (1999)
[21] DJ. Chadi, “Stabilities of Single-Layer Bilayer Steps on Si(001) Surfaces”, Phys. Rev . Lett., Volume 59, Issue 15, 1691-1694 (1987)
[22] D. E. Aspnes and J. Ihm, “Steps on (001) silicon surfaces”, J. Vac. Sci. Technol. B, Volume 5, Issue 4 , 939 - 944 (1987)
[23] S. P. Tobin, S. M. Vernon, C. Bajgar, V. E. Haven, L. M. Geoffroy, M. M. Sanfacon, D. R. Lillington, R. E. Hart, “High Efficiency GaAs/Ge Monolithic Tandem Solar Cells”, IEEE Electron Device Letters, Volume 9, Issue 5, 256-258 (1988)
[24] J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, “Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates”, Appl. Phys. Lett., Volume 76, Issue 14,1884 - 1886 (2000)
[25] C. K. Chia, A. Sridhara, M. Suryana, J. R. Dong, B. Z. Wang, G. K. Dalapati, and D. Z. Chi, “GaAs-Ge Materials Integration for Electronic and Photonic Applications”, Group IV Photonics, 2008 5th IEEE International Conference on
[26] B. Galiana, I. Rey-Stolle, C. Algora, K. Volz and W. Stolz, “A GaAs metalorganic vapor phase epitaxy growth process to reduce Ge outdiffusion from the Ge substrate”, Applied Physics Letters, Volume 92, Issue 15, 152102 (2008)
[27] N. Chand, J. Klem, T. Henderson and H. Morkoc, “Diffusion of As and Ge during growth of GaAs on Ge substrate by molecular‐beam epitaxy: Its effect on the device electrical characteristics”, J. Appl. Phys., Volume 59, Issue 10, 3601 - 3604 (1986)
[28] T. Kawai, H. Yonezu, H. Yoshida, and K. Pak, “Ge segregation and its suppression in GaAs epilayers grown on Ge(111) substrate” ,Appl. Phys. Lett., Volume 61, Issue 10, 1216-1218 (1992)
[29] C. K. Chia, J. R. Dong, D. Z. Chi, A. Sridhara, A. S. W. Wong, M. Suryana, G. K. Dalapati, S. J. Chua, and S. J. Lee, “Effects of AlAs prelayer on material and optical properties of GaAs/Ge(100) epitaxy”, Appl. Phys. Lett., Volume 92, 141905 (2008)
[30] S. A. Ringel, R. M. Sieg, S. M. Ting, and E. A. Fitzgerald, Proceedings of the 26th PVSC (1997) (unpublished), pp.793–798.
[31] P.R. Pukite and P.I. Cohen, “Control of GaAs Domain Formation Via Monolayer and Multilayer Steps on Misoriented Si(100)”, J. Cryst. Growth, 81, 214 (1987)
[32] R.S. Becker, T. Klitsner, and J.S. Vickers, J. Microscopy, Volume 152, Issue 1, 157–165 (1988)
[33] M. Kawabe, T. Ueda, and H. Takasugi, “Initial stage and domain structure of GaAs grown on Si(100) by molecular beam epitaxy”, Jpn. J. Appl. Phys., Volume 26, Issue 2, L114-L116 (1987)
[34] Y. D. Woo, T. W. Kang, T. W. Kim, “Improvement of the crystallinity of a GaAs epitaxial film grown on a Si substrate using a Si/SiGe/Ge buffer layer”, Thin Solid Films, Volume 279, Issues 1-2, 166-168 (1996)
[35] J. Z. Li, J. Bai, J. M. Hydrick, J. S. Park, C. Major, M. Carroll, J. G. Fiorenza, A. Lochtefeld, “Growth and characterization of GaAs layers on polished Ge/Si by selective aspect ratio trapping”, J. Cryst. Growth, Volume 311, Issue 11, 3133-3137 (2009)
[36] M. Kushibe, K. Eguchi, M. Funamizu, and Y. Ohba, “Heavy carbon doping in metalorganic chemical vapor deposition for GaAs using a low V/III ratio”, Appl. Phys. Lett., Volume 56, Issue 13, 1248-1250 (1990)
[37] H. Asai, “Anisotropic lateral growth in GaAs MOCVD layers on (001) substrates”, J. Cryst. Growth, Volume 80, Issue 2, 425-433 (1987)
[38] W. Reichert and R. M. Cohen, “Effects of substrate orientation and surface reconstruction on patterned substrate OMVPE of GaAs”, J. Electron. Mater., Volume 29, Issue 1, 118-128 (2000)
[39] S. A. Barnett and J. E. Greene, “Si molecular beam epitaxy: A model for temperature dependent incorporation probabilities and depth distributions of dopants exhibiting strong surface segregation”, Surf. Sci., Volume 151, Issue 1, 67-90 (1985)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top