跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王孝鍾
論文名稱:等通道轉角擠型製程參數對鎂粉固化塊材顯微組織與機械性質之影響
論文名稱(外文):Microstructure and Mechanical Behaviors in Consolidation of Magnesium Powder Fabricated by Equal Channel Angular Extrusion
指導教授:劉增豐
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:52
中文關鍵詞:粉末固化等通道轉角擠型
外文關鍵詞:magnesiumpowderconsolidationECAE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用-200mesh大小、平均粉末粒徑約為74μm的鎂粉,並選擇銅棒作為鎂粉容器來進行ECAE製程,在200℃、250℃、300℃的溫度下以路徑BC擠型一次、二次、四次。將得到的鎂粉塊材以SEM觀察其顯微組織並使用阿基米德法量測密度,接著做微硬度與壓縮試驗測試,最後進行腐蝕浸泡實驗。
結果顯示,鎂粉理想密度為1.88 g/cm3,而經過不同溫度與擠型道次ECAE製程的鎂粉塊材在溫度300℃且擠型道次為N=4時,密度可達到最高值1.85 g/cm3,為理想密度的98.4%。
微硬度方面,當溫度300℃且擠型道次為N=4時,微硬度可達到最高值49Hv,在300℃, N=4時孔洞率僅有1.6%;在200℃、250℃、300℃, N=4時,氧化物聚集大小的平均粒徑分別為29.14、21.16、14.95μm,因此當溫度從200℃增加至300℃時氧化物分散較均勻,可得到最高微硬度值。
壓縮試驗方面,200℃、250℃、300℃, N=4的最大抗壓應力分別為155MPa、175MPa、190MPa,壓縮降伏應力分別為75MPa、85MPa、100MPa,在300℃, N=4強度最大,
腐蝕浸泡實驗方面,200℃、250℃, N=4以及300℃, N=1, 2, 4的氧化程度(面積比例)分別為42%、39%、38%、34%、31%,且可觀察到腐蝕會先從顆粒邊界及顆粒與氧化物接觸介面開始發生,而300℃, N=4氧化程度最低,因此粉末間鍵結強度(Bonding)最高。

In this research, microstructure and mechanical behaviors of bulk magnesium consolidated from magnesium powder by equal channel angular extrusion (ECAE) were investigated. Particle size of magnesium powder was about 74μm in diameter. Magnesium powder was filled into copper cans then ECAEd for 1, 2 and 4 passes via Bc route at 200℃, 250℃ and 300℃, respectively. Microstructure of as ECAEed samples was observed by SEM. Density of each sample was carried out by Archimedes law. Microhardness, compression test and immersion corrosion test were conducted to investigate the properties of each ECAEed sample.
Maximum density of bulk magnesium is 1.85 g/cm3 achieved after 4 passes of ECAE at 300℃. Magnesium powder is softer and more ductile at higher temperature; therefore, it is more easily to be deformed and filled into pores between partilces. ECAE process deforms and fines magnesium powder to fill residual pores, hence pores are eliminated by filling of magnesium powder.
Maximum hardness value of bulk magnesium is 49 Hv achieved after 4 passes of ECAE at 300℃. It is due to the elimination of pores and the more uniform dispersion of oxides of samples at higher temperature.
After 4th pass of ECAE at 200℃, 250℃ and 300℃, ultra compressive stress (UCS) of consolidated bulk magnesium achieved 155MPa, 175MPa and 190MPa. Compressive yield stress (CYS) of consolidated bulk magnesium achieved 75MPa, 85MPa and 100MPa, respectively. It is due to the more uniform dispersion of oxides of samples at higher temperature.
After immersion corrosion for bulk magnesium of 4 passes at 200℃ and 250℃ and 1, 2 and 4 passes of ECAE at 300℃, degree of corrosion are 42%, 39%, 38%, 34% and 31%. Corrosion will take place initially between Mg and MgO interface. Best bonding strength between powders is achieved after 4 passes of ECAE at 300℃.

第一章 前言 1

第二章 文獻回顧 3
2.1 鎂的簡介 3
2.1.1 鎂的來源與冶煉 3
2.1.2 鎂與鎂合金的基本性質與應用 3
2.2 晶粒細化的方法 4
2.2.1 等通道轉角擠型(Equal Channel Angular Extrusion, ECAE)4
2.2.2 ECAE的原理 5
2.2.3 ECAE的擠型路徑 5
2.3 以ECAE製備粉末塊材 6
2.3.1 ECAE製備粉末塊材的發展 6
2.3.2 利用ECAE製程時溫度的影響 7
2.3.3 利用ECAE製程時擠型道次的影響 7

第三章 實驗方法 11
3.1 實驗流程 11
3.2 試棒製備 12
3.3 ECAE所用設備 12
3.4 測試與分析 13
3.4.1 掃描式電子顯微鏡分析(SEM) 13
3.4.2 密度量測 13
3.4.3 微硬度測試 13
3.4.4 材料壓縮測試(Compression test) 13
3.4.5 腐蝕浸泡分析 14

第四章 實驗結果與討論 19
4.1 加工前鎂粉粒徑大小與EDX分析 19
4.2 鎂粉經等通道轉角擠型後的顯微組織 19
4.2.1 顯微組織分析 19
4.2.2 溫度對鎂粉塊材密度的影響 20
4.2.3 擠型道次對鎂粉塊材密度的影響 21
4.3 機械性質探討 21
4.3.1 微硬度分析 21
4.3.2 Compression test 22
4.4 腐蝕浸泡實驗 23

第五章 結論 49
參考文獻 50
1. 賴耿陽,“非鐵金屬材料”,1990.
2. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, J.D. Lee, ”Texture Development and Its Effect on Mechanical Properties of an AZ61 Mg alloy Fabricated by Equal Channel Angular Pressing”, Acta Mater. 51 (2003) 3293-3307.
3. M. Mabuchi1, K. Ameyama, H. Iwasaki and K. Higashi, ”Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries”, Acta Mater. 47 (1999) 2047-2057.”
4. I. Karaman, M. Haouaoui, H.J. Maier, ”Nanoparticle Consolidation Using Equal Channel Angular Extrusion at Room Temperature”, J. Mater. Sci. 42 (2007) 1561-1576.
5. J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, I.E. Anderson, ”Consolidation of Amorphous Copper Based Powder by Equal Channel Angular Extrusion”, J. Non-Cryst. Solids 317 (2003) 144-151.
6. M. Haouaoui, I. Karaman, H. J. Maier, and K.T. Hartwig, ”Microstructure Evolution and Mechanical Behavior of Bulk Copper Obtained by Consolidation of Micro- and Nanopowders Using Equal Channel Angular Extrusion”, Metall. Mater. Trans. A 35A (2004) 2935-2949.
7. V.M. Segal, ”Materials Processing by Simple Shear”, Mater. Sci. Eng. A 197 (1995) 157-164.
8. V.M. Segal, K.T. Hartwig, R.E. Goforth, ”In Situ Composites Processed by Simple Shear”, Mater. Sci. Eng. A 224 (1997) 107-115.
9. M. Furekawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, ”The Shearing Characteristics Associated with Equal Channel Angular Pressing”, Mater. Sci. Eng. A 257 (1998) 328-332.
10. V.M. Segal, ”Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE)”, Mater. Sci. Eng. A 386 (2004) 269-276.
11. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, ”The Process of Grain Refinement in Equal Channel Angular Pressing”, Acta. Mater. 9 (1998) 3317-3331.
12. G.G. Yapici, I. Karaman, Z.P. Luo, H. Rack, ”Microstructure and Mechanical Properties of Severely Deformed Powder Precessed Ti-6Al-4V Using Equal Channel Angular Extrusion”, Scripta Mater. 49 (2003) 1021-1027.
13. Y.T. Zhu, T.C. Lowe, T.G. Langdon, ”Performance and Applications of Nanostructured Materials Produced by Severe Plastic Deformation”, Scripta Mater. 51 (2004) 825-830.
14. Gulhan ?akmak ‧ Tayfur ?zturk, ”ECAP Processing and Mechanical Milling of Mg and Mg-Ti Powders: A Comparative Study”, J. Mater. Sci. 46 (2011) 5559-5567.
15. O.N. Senkov, S.V. Senkova, J.M. Scott, D.B. Miracle, ”Compaction of Amorphous Aluminum Alloy Powder by Direct Extrusion and Equal Channel Angular Extrusion”, Mater. Sci. Eng. A 393 (2005) 12-21.
16. R. Derakhshandeh. H, A. Jenabali Jahromi, ”An Investigation on the Capability of Equal Channel Angular Pressing for Consolidation of Aluminum and Aluminum Composite Powder”, Mater. Des. 32 (2011) 3377-3388.
17. H. ASGHARZADEH, A. SIMCHI, and H.S. KIM, ”Microstructure and Mechanical Properties of Oxide-Dispersion Strengthened Al6063 Alloy with Ultra-Fine Grain Structure”, Metall. Mater. Trans. A 42A (2011) 816-824.
18. M. Moss, R. Lapovok, and C.J. Bettles, ”The Equal Channel Angular Pressing of Magnesium and Magnesium Alloy Powders”, J. Miner. Met. Mater. Soc. 54 (2007) 54-57.
19. I. Karaman, J. Robertson, J.-T. IM, S.N. MATHAUDHU, Z.P. LUO, and K.T. HARTWIG, ”The Effect of Temperature and Extrusion Speed on The Consolidation of Zirconium-Based Metallic Glass Powder Using Equal-Channel Angular Extrusion”, Metall. Mater. Trans. A 35A (2004) 247-256.
20. X. Wu, W. Xu, K. Xia, ”Pure Aluminum with Different Grain Size Distributions by Consolidation of Particles Using Equal Channel Angular Pressing with Back Pressure”, Mater. Sci Eng, A 493 (2008), 241-245.
21. T.G. Nieh, P. Luo, W. Nellis, D. Lesuer, D. Benson, ”Dynamic Compaction of Aluminum Nanocrystals”, Acta Mater. 44 (1996) 3781–3788.
22. LU? LI*, M. O. LAI, M. GUPTA, B. W. CHUA, A.OSMAN, ”Improvement of Microstructure and Mechanical Properties of AZ91/SiC Composite by Mechanical Alloying”, J. Mater. Sci. 35 (2000) 5553-5561.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊