跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴潢演
論文名稱:利用柯肯道爾效應來製備中空奈米結構
論文名稱(外文):Fabrication of Hollow Nanostructures through the Kirkendall Effect
指導教授:吳文偉
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:中空奈米結構柯肯道爾效應鍺化鎳
外文關鍵詞:hollow nanostructuresthe Kirkendall effectnickel germanide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由鎳/鍺、金/鈦之核殼奈米粒子進行固態反應來形成中空鍺化鎳、金鈦化合物化物奈米球殼,並利用臨場超高真空穿透式電子顯微鏡來觀察形成中空奈米球殼的反應過程。首先,利用電子束微影系統以及電子槍蒸鍍系統,將鎳/鍺核殼奈米結構製備於穿透式電子顯微鏡觀察用的氮化矽薄膜窗口試片上,此外亦藉由電子槍沉積系統鍍覆金薄膜於氮化矽薄膜窗口試片背面的二氧化矽側,並使用快速退火系統900℃下加熱10分鐘形成金奈米粒子,接著沉積鈦薄膜包覆所形成之金粒子來製備出金/鈦核殼奈米粒子。當此兩種核殼奈米粒子分別於450℃與600℃以上加熱時,因其核殼材料界面間的非平衡交互擴散,即為柯肯道爾效應,使得在內部具較大擴散係數的材料上產生空孔,並隨著反應的進行而逐漸形成中空形貌之金鈦化合物奈米球殼或是內部有鎳剩餘的鍺化鎳奈米球/殼結構。最後,由本研究中臨場加熱所觀察到的擴散行為,以及後續對形成的中空奈米結構所做的顯微結構、晶格結構、元素分布等分析,我們提出具有不同尺寸核顆粒的核殼奈米結構,其各自透過柯肯道爾效應來製備中空奈米結構的擴散機制。
In this work, we demonstrate the formation of hollow Ni germanide and AuTi compound nanospheres by a solid state reaction of Ni/Ge and Au/Ti core/shell nanoparticles, respectively. The structural evolution of hollow AuTi compound and Ni germanide nanospheres have been investigated in real-time ultrahigh vacuum transmission electron microscopy (UHV-TEM). When annealed above 450℃, the non-equilibrium counter-diffusion of core and shell species occurred through an interface. Therefore, Ni germanide and AuTi compound hollow nanospheres were formed by a solid state reaction involving the Kirkendall effect. Finally, we propose the mechanism with the effects of the size and annealing duration on solid state reaction based on the Kirkendall effect. And it can look forward to the application in the fabrication of other system with different hollow morphologies according to the mechanism proposed in this study.
摘要 I
Abstract II
致謝 III
目錄 IV
List of Acronyms and Abbreviations XII
第一章 前言 1
第二章 文獻回顧 3
2-1 奈米科技 3
2-2中空結構奈米材料合成方法介紹 4
2-2-1傳統模板法(conventional templates) 4
2-2-1-1逐層組裝法(layer-by-layer assembly) 5
2-2-1-2直接化學沉積法(direct chemical deposition) ....................................6
2-2-1-3表面化學吸附法(chemical absorption on surface layer) 7
2-2-1-4 軟性模板法(soft-templating method) 7
2-2-2奈米尺度之柯肯道爾效應(nanoscale Kirkendall effect) 9
2-2-3伽凡尼取代(galvanic replacement) 10
2-2-4化學蝕刻(chemical etching) 11
2-3 中空奈米結構的應用與發展 13
2-3-1 生物醫學的應用(biomedical applications) 13
2-3-2 鋰離子電池(lithium-ion batteries) 13
2-3-3 氣體感測器(gas sensing) 14
2-3-4 光催化(potocatalysis) 15
2-4 研究動機 15
第三章 實驗方法與步驟 23
3-1 實驗步驟 23
3-1-1 製備氮化矽薄膜窗口試片 23
3-1-2 製備鎳/鍺核殼奈米粒子 23
3-1-3 製備鎳/鍺核殼奈米粒子橫截面 24
3-1-4製備金/鈦核殼奈米粒子 24
3-1-5 臨場加熱形成中空奈米結構 24
3-1-5 核殼奈米結構及中空奈米結構形貌觀察與結構鑑定 24
3-2 實驗儀器介紹 25
3-2-1 形貌觀察及結構鑑定 25
3-2-1-1. 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 25
3-2-1-2. 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 26
3-2-2. 試片製備 26
3-2-2-1 電子束微影系統(E-beam lithography) 26
3-2-2-2 電子槍蒸鍍系統(E-beam evaporator) 26
3-2-2-3 聚焦離子束系統(Focused Ion Beam System) 27
第四章 結果與討論 32
4-1 鎳/鍺核殼奈米粒子 32
4-1-1 形貌分析 32
4-1-2顯微結構分析 32
4-2鍺化鎳中空奈米粒子 33
4-2-1顯微結構分析 33
4-2-2結晶結構分析 34
4-2-3元素分布分析 34
4-2-4形成鍺化鎳中空奈米粒子的臨場加熱觀察 35
4-3鎳/鍺核殼結構橫截面試片 36
4-3-1鎳/鍺核殼結構橫截面試片臨場加熱觀察 36
4-3-2鍺化鎳中空結構橫截面試片結晶結構分析 37
4-4金/鈦核殼奈米粒子 38
4-4-1顯微結構分析 38
4-4-2結晶結構分析 39
4-5金鈦化合物中空奈米粒子 39
4-5-1顯微結構分析 39
4-5-2結晶結構分析 39
4-5-3元素分布分析 40
4-6擴散機制探討 40
第五章 結論與未來展望 57
5-1 結論 57
5-2 未來展望 58
參考文獻 59
1. Arruebo, M., Drug Delivery from Structured Porous Inorganic Materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012. 4(1): p. 16-30.
2. Li, X., Meduri, P., Chen, X., Qi, W., Engelhard, M. H., Xu, W., Ding, F., Xiao, J., Wang, W., Wang, C., Zhang, J. G., and Liu, J., Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Journal of Materials Chemistry, 2012. 22(22): p. 11014-11017.
3. Zhang, L., Qiao, S. Z., Jin, Y. G., Chen, Z. G., Gu, H. C., and Lu, G. Q., Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control. Advanced Materials, 2008. 20(4): p. 805-809.
4. Caruso, F., Spasova, M., Susha, A., Giersig, M., and Caruso, R. A., Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials, 2000. 13(1): p. 109-116.
5. Skrabalak, S. E., Chen, J., Au, L., Lu, X., Li, X., and Xia, Y., Gold Nanocages for Biomedical Applications. Advanced Materials, 2007. 19(20): p. 3177-3184.
6. Chen, J. F., Ding, H. M., Wang, J. X., and Shao, L., Preparation and Characterization of Porous Hollow Silica Nanoparticles for Drug Delivery Application. Biomaterials, 2004. 25(4): p. 723-727.
7. Daum, N., Tscheka, C., Neumeyer, A., and Schneider, M., Novel Approaches for Drug Delivery Systems in Nanomedicine: Effects of Particle Design and Shape. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012. 4(1): p. 52-65.
8. Lou, X. W., Archer, L. A., and Yang, Z., Hollow Micro-/Nanostructures: Synthesis and Applications. Advanced Materials, 2008. 20(21): p. 3987-4019.
9. Caruso, R. A., Susha, A., and Caruso, F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 2001. 13(2): p. 400-409.
10. Caruso, F., Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry – A European Journal, 2000. 6(3): p. 413-419.
11. Correa Duarte, M. A., Kosiorek, A., Kandulski, W., Giersig, M., and Liz-Marzán, L. M., Layer-by-Layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids. Chemistry of Materials, 2005. 17(12): p. 3268-3272.
12. Li, L., Ma, R., Iyi, N., Ebina, Y., Takada, K., and Sasaki, T., Hollow Nanoshell of Layered Double Hydroxide. Chemical Communications, 2006(29): p. 3125-3127.
13. Kondo, K., Kida, T., Ogawa, Y., Arikawa, Y., and Akashi, M., Nanotube Formation through the Continuous One-Dimensional Fusion of Hollow Nanocapsules Composed of Layer-by-Layer Poly(lactic acid) Stereocomplex Films. Journal of the American Chemical Society, 2010. 132(24): p. 8236-8237.
14. Nakamura, M., Katagiri, K., and Koumoto, K., Preparation of Hybrid Hollow Capsules Formed with Fe3O4 and Polyelectrolytes via the Layer-by-Layer Assembly and the Aqueous Solution Process. Journal of Colloid and Interface Science, 2010. 341(1): p. 64-68.
15. Caruso, F., Caruso, R. A., and Möhwald, H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111-1114.
16. Caruso, F., Donath, E., and Möhwald, H., Influence of Polyelectrolyte Multilayer Coatings on Förster Resonance Energy Transfer between 6-Carboxyfluorescein and Rhodamine B-Labeled Particles in Aqueous Solution. The Journal of Physical Chemistry B, 1998. 102(11): p. 2011-2016.
17. Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., and Möhwald, H., Stepwise Polyelectrolyte Assembly on Particle Surfaces: a Novel Approach to Colloid Design. Polymers for Advanced Technologies, 1998. 9(10-11): p. 759-767.
18. Caruso, F., Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly Colloid Chemistry II, M. Antonietti, Editor. 2003, Springer Berlin / Heidelberg. p. 145-168.
19. van Bommel, K. J. C., Friggeri, A., and Shinkai, S., Organic Templates for the Generation of Inorganic Materials. Angewandte Chemie International Edition, 2003. 42(9): p. 980-999.
20. Imhof, A., Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells. Langmuir, 2001. 17(12): p. 3579-3585.
21. Graf, C., Vossen, D. L. J., Imhof, A., and van Blaaderen, A., A General Method To Coat Colloidal Particles with Silica. Langmuir, 2003. 19(17): p. 6693-6700.
22. Arnal, P. M., Weidenthaler, C., and Schüth, F., Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties. Chemistry of Materials, 2006. 18(11): p. 2733-2739.
23. Kim, S. W., Kim, M., Lee, W. Y., and Hyeon, T., Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2002. 124(26): p. 7642-7643.
24. Sun, X. and Li, Y., Ga2O3 and GaN Semiconductor Hollow Spheres. Angewandte Chemie International Edition, 2004. 43(29): p. 3827-3831.
25. Yang, M., Ma, J., Niu, Z., Dong, X., Xu, H., Meng, Z., Jin, Z., Lu, Y., Hu, Z., and Yang, Z., Synthesis of Spheres with Complex Structures Using Hollow Latex Cages as Templates. Advanced Functional Materials, 2005. 15(9): p. 1523-1528.
26. Suárez, F. J., Sevilla, M., Álvarez, S., Valdés-Solís, T., and Fuertes, A. B., Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. Chemistry of Materials, 2007. 19(13): p. 3096-3098.
27. Bao, J., Liang, Y., Xu, Z., and Si, L., Facile Synthesis of Hollow Nickel Submicrometer Spheres. Advanced Materials, 2003. 15(21): p. 1832-1835.
28. Sun, X. and Li, Y., Hollow carbonaceous capsules from glucose solution. Journal of Colloid and Interface Science, 2005. 291(1): p. 7-12.
29. Zhang, X. and Li, D., Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres. Angewandte Chemie International Edition, 2006. 45(36): p. 5971-5974.
30. Liu, Y., Chu, Y., Zhuo, Y., Dong, L., Li, L., and Li, M., Controlled Synthesis of Various Hollow Cu Nano/MicroStructures via a Novel Reduction Route. Advanced Functional Materials, 2007. 17(6): p. 933-938.
31. Xu, H. and Wang, W., Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angewandte Chemie International Edition, 2007. 46(9): p. 1489-1492.
32. Cong, H. P. and Yu, S. H., Hybrid ZnO–Dye Hollow Spheres with New Optical Properties by a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide. Advanced Functional Materials, 2007. 17(11): p. 1814-1820.
33. Wang, W. Z., Poudel, B., Wang, D. Z., and Ren, Z. F., Synthesis of PbTe Nanoboxes Using a Solvothermal Technique. Advanced Materials, 2005. 17(17): p. 2110-2114.
34. Yu, T., Park, J., Moon, J., An, K., Piao, Y., and Hyeon, T., Synthesis of Uniform Goethite Nanotubes with Parallelogram Cross Section. Journal of the American Chemical Society, 2007. 129(47): p. 14558-14559.
35. Liu, T., Xie, Y., and Chu, B., Use of Block Copolymer Micelles on Formation of Hollow MoO3 Nanospheres. Langmuir, 2000. 16(23): p. 9015-9022.
36. Zhang, D., Qi, L., Ma, J., and Cheng, H., Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer–Surfactant Solutions. Advanced Materials, 2002. 14(20): p. 1499-1502.
37. Ji, X., Li, G., and Huang, X., The Synthesis of Hollow CaCO3 Microspheres in Mixed Solutions of Surfactant and Polymer. Materials Letters, 2008. 62(4–5): p. 751-754.
38. W. Ostwald, Z. Phys. Chem. 1900, 34, 495.
39. A. D. Smigelskas, E. O. Kirkendall, Trans. Am. Inst. Min. Metall. Pet. Eng. 1947, 171, 130.
40. Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., and Alivisatos, A. P., Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004. 304(5671): p. 711-714.
41. Yin, Y., Erdonmez, C. K., Cabot, A., Hughes, S., and Alivisatos, A. P., Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials, 2006. 16(11): p. 1389-1399.
42. Peng, S. and Sun, S., Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles. Angewandte Chemie International Edition, 2007. 46(22): p. 4155-4158.
43. Cabot, A., Puntes, V. F., Shevchenko, E., Yin, Y., Balcells, L., Marcus, M. A., Hughes, S. M., and Alivisatos, A. P., Vacancy Coalescence during Oxidation of Iron Nanoparticles. Journal of the American Chemical Society, 2007. 129(34): p. 10358-10360.
44. Liang, H. P., Zhang, H. M., Hu, J. S., Guo, Y. G., Wan, L. J., and Bai, C. L., Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie International Edition, 2004. 43(12): p. 1540-1543.
45. Vasquez, Y., Sra, A. K., and Schaak, R. E., One-Pot Synthesis of Hollow Superparamagnetic CoPt Nanospheres. Journal of the American Chemical Society, 2005. 127(36): p. 12504-12505.
46. Sun, Y. and Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002. 298(5601): p. 2176-2179.
47. Sun, Y. and Xia, Y., Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes. Analytical Chemistry, 2002. 74(20): p. 5297-5305.
48. Sun, Y., Mayers, B. T., and Xia, Y., Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters, 2002. 2(5): p. 481-485.
49. Sun, Y., Mayers, B., and Xia, Y., Metal Nanostructures with Hollow Interiors. Advanced Materials, 2003. 15(7-8): p. 641-646.
50. Kim, D., Park, J., An, K., Yang, N. K., Park, J. G., and Hyeon, T., Synthesis of Hollow Iron Nanoframes. Journal of the American Chemical Society, 2007. 129(18): p. 5812-5813.
51. Xiong, Y., Wiley, B., Chen, J., Li, Z. Y., Yin, Y., and Xia, Y., Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie (International ed. in English), 2005. 44(48): p. 7913-7917.
52. Zeng, H., Cai, W., Liu, P., Xu, X., Zhou, H., Klingshirn, C., and Kalt, H., ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal−Semiconductor Interface, Improvement of Blue Emission and Photocatalysis. ACS Nano, 2008. 2(8): p. 1661-1670.
53. Yang, J., Peng, J., Zhang, Q., Peng, F., Wang, H., and Yu, H., One-Step Synthesis and Characterization of Gold–Hollow PbSx Hybrid Nanoparticles. Angewandte Chemie International Edition, 2009. 48(22): p. 3991-3995.
54. Huang, S., Huang, J., Yang, J., Peng, J. J., Zhang, Q., Peng, F., Wang, H., and Yu, H., Chemical Synthesis, Structure Characterization, and Optical Properties of Hollow PbSx–Solid Au Heterodimer Nanostructures. Chemistry – A European Journal, 2010. 16(20): p. 5920-5926.
55. An, K., Kwon, S. G., Park, M., Na, H. B., Baik, S.-I., Yu, J. H., Kim, D., Son, J. S., Kim, Y. W., Song, I. C., Moon, W. K., Park, H. M., and Hyeon, T., Synthesis of Uniform Hollow Oxide Nanoparticles through Nanoscale Acid Etching. Nano Letters, 2008. 8(12): p. 4252-4258.
56. Ohmori, M. and Matijević, E., Preparation and Properties of Uniform Coated Colloidal Particles. VII. Silica on Hematite. Journal of Colloid and Interface Science, 1992. 150(2): p. 594-598.
57. Wilcox, D. L., Berg, M., Bernat, T., Kellerman, D., CochranJr, J. K., Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Applications, Mater. Res. Soc. Symp. Proc. 1995, Vol. 372, MRS Pittsburgh, PA.
58. Cochran, J. K., Ceramic Hollow Spheres and their Applications. Current Opinion in Solid State and Materials Science, 1998. 3(5): p. 474-479.
59. Zhou, J., Wu, W., Caruntu, D., Yu, M. H., Martin, A., Chen, J. F., O'Connor, C. J., and Zhou, W. L., Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application. The Journal of Physical Chemistry C, 2007. 111(47): p. 17473-17477.
60. Zhou, W., Gao, P., Shao, L., Caruntu, D., Yu, M., Chen, J., and O'Connor, C. J., Drug-Loaded, Magnetic, Hollow Silica Nanocomposites for Nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): p. 233-237.
61. Sokolova, V. and Epple, M., Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells. Angewandte Chemie International Edition, 2008. 47(8): p. 1382-1395.
62. Cai, Y., Pan, H., Xu, X., Hu, Q., Li, L., and Tang, R., Ultrasonic Controlled Morphology Transformation of Hollow Calcium Phosphate Nanospheres: A Smart and Biocompatible Drug Release System. Chemistry of Materials, 2007. 19(13): p. 3081-3083.
63. Wei, W., Ma, G. H., Hu, G., Yu, D., McLeish, T., Su, Z. G., and Shen, Z. Y., Preparation of Hierarchical Hollow CaCO3 Particles and the Application as Anticancer Drug Carrier. Journal of the American Chemical Society, 2008. 130(47): p. 15808-15810.
64. Kasavajjula, U., Wang, C., and Appleby, A. J., Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. Journal of Power Sources, 2007. 163(2): p. 1003-1039.
65. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J. M., Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
66. Lou, X. W., Deng, D., Lee, J. Y., and Archer, L. A., Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials, 2008. 20(20): p. 6562-6566.
67. Ma, H., Cheng, F., Chen, J. Y., Zhao, J. Z., Li, C. S., Tao, Z. L., and Liang, J., Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Advanced Materials, 2007. 19(22): p. 4067-4070.
68. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., and van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377.
69. Lou, X. W., Yuan, C., Rhoades, E., Zhang, Q., and Archer, L. A., Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells. Advanced Functional Materials, 2006. 16(13): p. 1679-1684.
70. Lou, X. W., Li, C. M., and Archer, L. A., Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials, 2009. 21(24): p. 2536-2539.
71. Wang, X., Wu, X. L., Guo, Y. G., Zhong, Y. t., Cao, X. q., Ma, Y., and Yao, J. n., Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Advanced Functional Materials, 2010. 20(10): p. 1680-1686.
72. Zhang, H., Zhu, Q., Zhang, Y., Wang, Y., Zhao, L., and Yu, B., One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. Advanced Functional Materials, 2007. 17(15): p. 2766-2771.
73. Zhao, Q., Gao, Y., Bai, X., Wu, C., and Xie, Y., Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts. European Journal of Inorganic Chemistry, 2006. 2006(8): p. 1643-1648.
74. Li, X. L., Lou, T. J., Sun, X. M., and Li, Y. D., Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorganic Chemistry, 2004. 43(17): p. 5442-5449.
75. Kim, S. J., Hwang, I. S., Choi, J. K., Kang, Y. C., and Lee, J. H., Enhanced C2H5OH Sensing Characteristics of Nano-Porous In2O3 Hollow Spheres Prepared by Sucrose-Mediated Hydrothermal Reaction. Sensors and Actuators B: Chemical, 2011. 155(2): p. 512-518.
76. Lou, X. W., Wang, Y., Yuan, C., Lee, J. Y., and Archer, L. A., Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials, 2006. 18(17): p. 2325-2329.
77. Zhang, W. D., Xu, B., and Jiang, L. C., Functional Hybrid Materials Based on Carbon Nanotubes and Metal Oxides. Journal of Materials Chemistry, 2010. 20(31): p. 6383-6391.
78. Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H., and Lu, Y., Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. Journal of the American Chemical Society, 2007. 129(27): p. 8406-8407.
79. Zeng, Y., Wang, X., Wang, H., Dong, Y., Ma, Y., and Yao, J., Multi-Shelled Titania Hollow Spheres Fabricated by a Hard Template Strategy: Enhanced Photocatalytic Activity. Chemical Communications, 2010. 46(24): p. 4312-4314.
80. Yu, J. and Zhang, J., A Simple Template-Free Approach to Tio2 Hollow Spheres with Enhanced Photocatalytic Activity. Dalton Transactions, 2010. 39(25): p. 5860-5867.
81. Lv, K., Yu, J., Deng, K., Sun, J., Zhao, Y., Du, D., and Li, M., Synergistic Effects of Hollow Structure and Surface Fluorination on the Photocatalytic Activity of Titania. Journal Of Hazardous Materials, 2010. 173(1–3): p. 539-543.
82. Cao, S. W. and Zhu, Y. J., Hierarchically Nanostructured α-Fe2O3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment. The Journal of Physical Chemistry C, 2008. 112(16): p. 6253-6257.
83. Zhang, H., Zhang, X., and Yang, X., Facile Synthesis of Monodisperse Polymer/SiO2/Polymer/TiO2 Tetra-Layer Microspheres and the Corresponding Double-Walled Hollow SiO2/TiO2 Microspheres. Journal of Colloid and Interface Science, 2010. 348(2): p. 431-440.
84. Liu, Z., Sun, D. D., Guo, P., and Leckie, J. O., One-Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates. Chemistry – A European Journal, 2007. 13(6): p. 1851-1855.
85. Fan, H. J., Gösele, U., and Zacharias, M., Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007. 3(10): p. 1660-1671.
86. Caruso, F., Shi, X., Caruso, R. A., and Susha, A., Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials, 2001. 13(10): p. 740-744.
87. Chen, G. C., Kuo, C. Y., and Lu, S. Y., A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells. Journal of the American Ceramic Society, 2005. 88(2): p. 277-283.
88. Liang, Z., Susha, A., and Caruso, F., Gold Nanoparticle-Based Core−Shell and Hollow Spheres and Ordered Assemblies Thereof. Chemistry of Materials, 2003. 15(16): p. 3176-3183.
89. Wang, L., Ebina, Y., Takada, K., and Sasaki, T., Ultrathin hollow nanoshells of manganese oxide. Chemical Communications, 2004(9): p. 1074-1075.
90. Wang, Ebina, Y., Takada, K., and Sasaki, T., Ultrathin Films and Hollow Shells with Pillared Architectures Fabricated via Layer-by-Layer Self-Assembly of Titania Nanosheets and Aluminum Keggin Ions. The Journal of Physical Chemistry B, 2004. 108(14): p. 4283-4288.
91. Wang, D. and Caruso, F., Polyelectrolyte-Coated Colloid Spheres as Templates for Sol−Gel Reactions. Chemistry of Materials, 2002. 14(5): p. 1909-1913.
92. Eiden, S. and Maret, G., Preparation and Characterization of Hollow Spheres of Rutile. Journal of Colloid and Interface Science, 2002. 250(2): p. 281-284.
93. Kim, T. H., Lee, K. H., and Kwon, Y. K., Monodisperse hollow titania nanospheres prepared using a cationic colloidal template. Journal of Colloid and Interface Science, 2006. 304(2): p. 370-377.
94. Wang, P., Chen, D., and Tang, F. Q., Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis. Langmuir, 2006. 22(10): p. 4832-4835.
95. Cheng, X., Chen, M., Wu, L., and Gu, G., Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres. Langmuir, 2006. 22(8): p. 3858-3863.
96. Lu, Y., McLellan, J., and Xia, Y., Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir, 2004. 20(8): p. 3464-3470.
97. Chen, M., Wu, L., Zhou, S., and You, B., A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Advanced Materials, 2006. 18(6): p. 801-806.
98. Cornelissen, J. J. L. M., Connor, E. F., Kim, H. C., Lee, V. Y., Magibitang, T., Rice, P. M., Volksen, W., Sundberg, L. K., and Miller, R. D., Versatile Synthesis of Nanometer Sized Hollow Silica Spheres. Chemical Communications, 2003(8): p. 1010-1011.
99. zu Putlitz, B., Landfester, K., Fischer, H., and Antonietti, M., The Generation of “Armored Latexes” and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes. Advanced Materials, 2001. 13(7): p. 500-503.
100. Song, X. and Gao, L., Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol−Gel Process and Enhanced Photocatalytic Activities. The Journal of Physical Chemistry C, 2007. 111(23): p. 8180-8187.
101. Velikov, K. P. and van Blaaderen, A., Synthesis and Characterization of Monodisperse Core−Shell Colloidal Spheres of Zinc Sulfide and Silica. Langmuir, 2001. 17(16): p. 4779-4786.
102. Hosein, I. D. and Liddell, C. M., Homogeneous, Core−Shell, and Hollow-Shell ZnS Colloid-Based Photonic Crystals. Langmuir, 2007. 23(5): p. 2892-2897.
103. Wolosiuk, A., Armagan, O., and Braun, P. V., Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres. Journal of the American Chemical Society, 2005. 127(47): p. 16356-16357.
104. Lu, L., Sun, G., Xi, S., Wang, H., Zhang, H., Wang, T., and Zhou, X., A Colloidal Templating Method To Hollow Bimetallic Nanostructures. Langmuir, 2003. 19(7): p. 3074-3077.
105. Cheng, F., Ma, H., Li, Y., and Chen, J., Ni1-xPtx (x = 0−0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry, 2007. 46(3): p. 788-794.
106. Huang, Z. and Tang, F., Preparation, Structure, and Magnetic Properties of Mesoporous Magnetite Hollow Spheres. Journal of Colloid and Interface Science, 2005. 281(2): p. 432-436.
107. Wang, D., Song, C., Hu, Z., and Fu, X., Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures. The Journal of Physical Chemistry B, 2004. 109(3): p. 1125-1129.
108. Wang, J., et al., Fabrication, Assembly and Magnetic Properties of Nickel Hollow Nanoballs. Modern Physics Letters B, 2006. 20(10): p. 549-555
109. Jin, P., Chen, Q., Hao, L., Tian, R., Zhang, L., and Wang, L., Synthesis and Catalytic Properties of Nickel−Silica Composite Hollow Nanospheres. The Journal of Physical Chemistry B, 2004. 108(20): p. 6311-6314.
110. Yoshikawa, H., Hayashida, K., Kozuka, Y., Horiguchi, A., Awaga, K., Bandow, S., and Iijima, S., Preparation and Magnetic Properties of Hollow Nano-Spheres Of Cobalt and Cobalt Oxide: Drastic Cooling-Field Effects on Remnant Magnetization Of Antiferromagnet. Applied Physics Letters, 2004. 85(22): p. 5287-5289.
111. Ohnishi, M., Kozuka, Y., Ye, Q. L., Yoshikawa, H., Awaga, K., Matsuno, R., Kobayashi, M., Takahara, A., Yokoyama, T., Bandow, S., and Iijima, S., Phase Selective Preparations and Surface Modifications of Spherical Hollow Nanomagnets. Journal Of Materials Chemistry, 2006. 16(31): p. 3215-3220.
112. 汪建民, "材料分析," 中國材料科學學會.
113. 李正中, "薄膜光學與鍍膜技術," 10, 292-293 (1999).
114. Tseng, A. A., Recent Developments in Nanofabrication Using Focused Ion Beams. Small, 2005. 1(10): p. 924-939.
115. Wu, Y. and Yang, P., Melting and Welding Semiconductor Nanowires in Nanotubes. Advanced Materials, 2001. 13(7): p. 520-523.
116. Jae-Wook Lee, Kyung-Hwan Kwak, Hyoungsub Kim and Cheol-Woong Yang, In-Situ Annealing Study on the Thermal Stability of Nickel Germanides.Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 677∼680
117. Tang, J., Wang, C. Y., Xiu, F., Lang, M., Chu, L. W., Tsai, C. J., Chueh, Y. L., Chen, L. J., and Wang, K. L., Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors. ACS Nano, 2011. 5(7): p. 6008-6015.
118. Ghoshtagore, R. N., Diffusion of Nickel in Amorphous Silicon Dioxide and Silicon Nitride Films. Journal of Applied Physics, 1969. 40(11): p. 4374-4376.
119. Kwon, J. Y., Yoon, T. S., Kim, K. B., and Min, S. H., Comparison of the Agglomeration Behavior of Au And Cu Films Sputter Deposited on Silicon Dioxide. Journal Of Applied Physics, 2003. 93(6): p. 3270-3278.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top