|
1. Arruebo, M., Drug Delivery from Structured Porous Inorganic Materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012. 4(1): p. 16-30. 2. Li, X., Meduri, P., Chen, X., Qi, W., Engelhard, M. H., Xu, W., Ding, F., Xiao, J., Wang, W., Wang, C., Zhang, J. G., and Liu, J., Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Journal of Materials Chemistry, 2012. 22(22): p. 11014-11017. 3. Zhang, L., Qiao, S. Z., Jin, Y. G., Chen, Z. G., Gu, H. C., and Lu, G. Q., Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control. Advanced Materials, 2008. 20(4): p. 805-809. 4. Caruso, F., Spasova, M., Susha, A., Giersig, M., and Caruso, R. A., Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials, 2000. 13(1): p. 109-116. 5. Skrabalak, S. E., Chen, J., Au, L., Lu, X., Li, X., and Xia, Y., Gold Nanocages for Biomedical Applications. Advanced Materials, 2007. 19(20): p. 3177-3184. 6. Chen, J. F., Ding, H. M., Wang, J. X., and Shao, L., Preparation and Characterization of Porous Hollow Silica Nanoparticles for Drug Delivery Application. Biomaterials, 2004. 25(4): p. 723-727. 7. Daum, N., Tscheka, C., Neumeyer, A., and Schneider, M., Novel Approaches for Drug Delivery Systems in Nanomedicine: Effects of Particle Design and Shape. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012. 4(1): p. 52-65. 8. Lou, X. W., Archer, L. A., and Yang, Z., Hollow Micro-/Nanostructures: Synthesis and Applications. Advanced Materials, 2008. 20(21): p. 3987-4019. 9. Caruso, R. A., Susha, A., and Caruso, F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 2001. 13(2): p. 400-409. 10. Caruso, F., Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry – A European Journal, 2000. 6(3): p. 413-419. 11. Correa Duarte, M. A., Kosiorek, A., Kandulski, W., Giersig, M., and Liz-Marzán, L. M., Layer-by-Layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids. Chemistry of Materials, 2005. 17(12): p. 3268-3272. 12. Li, L., Ma, R., Iyi, N., Ebina, Y., Takada, K., and Sasaki, T., Hollow Nanoshell of Layered Double Hydroxide. Chemical Communications, 2006(29): p. 3125-3127. 13. Kondo, K., Kida, T., Ogawa, Y., Arikawa, Y., and Akashi, M., Nanotube Formation through the Continuous One-Dimensional Fusion of Hollow Nanocapsules Composed of Layer-by-Layer Poly(lactic acid) Stereocomplex Films. Journal of the American Chemical Society, 2010. 132(24): p. 8236-8237. 14. Nakamura, M., Katagiri, K., and Koumoto, K., Preparation of Hybrid Hollow Capsules Formed with Fe3O4 and Polyelectrolytes via the Layer-by-Layer Assembly and the Aqueous Solution Process. Journal of Colloid and Interface Science, 2010. 341(1): p. 64-68. 15. Caruso, F., Caruso, R. A., and Möhwald, H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111-1114. 16. Caruso, F., Donath, E., and Möhwald, H., Influence of Polyelectrolyte Multilayer Coatings on Förster Resonance Energy Transfer between 6-Carboxyfluorescein and Rhodamine B-Labeled Particles in Aqueous Solution. The Journal of Physical Chemistry B, 1998. 102(11): p. 2011-2016. 17. Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., and Möhwald, H., Stepwise Polyelectrolyte Assembly on Particle Surfaces: a Novel Approach to Colloid Design. Polymers for Advanced Technologies, 1998. 9(10-11): p. 759-767. 18. Caruso, F., Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly Colloid Chemistry II, M. Antonietti, Editor. 2003, Springer Berlin / Heidelberg. p. 145-168. 19. van Bommel, K. J. C., Friggeri, A., and Shinkai, S., Organic Templates for the Generation of Inorganic Materials. Angewandte Chemie International Edition, 2003. 42(9): p. 980-999. 20. Imhof, A., Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells. Langmuir, 2001. 17(12): p. 3579-3585. 21. Graf, C., Vossen, D. L. J., Imhof, A., and van Blaaderen, A., A General Method To Coat Colloidal Particles with Silica. Langmuir, 2003. 19(17): p. 6693-6700. 22. Arnal, P. M., Weidenthaler, C., and Schüth, F., Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties. Chemistry of Materials, 2006. 18(11): p. 2733-2739. 23. Kim, S. W., Kim, M., Lee, W. Y., and Hyeon, T., Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2002. 124(26): p. 7642-7643. 24. Sun, X. and Li, Y., Ga2O3 and GaN Semiconductor Hollow Spheres. Angewandte Chemie International Edition, 2004. 43(29): p. 3827-3831. 25. Yang, M., Ma, J., Niu, Z., Dong, X., Xu, H., Meng, Z., Jin, Z., Lu, Y., Hu, Z., and Yang, Z., Synthesis of Spheres with Complex Structures Using Hollow Latex Cages as Templates. Advanced Functional Materials, 2005. 15(9): p. 1523-1528. 26. Suárez, F. J., Sevilla, M., Álvarez, S., Valdés-Solís, T., and Fuertes, A. B., Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica. Chemistry of Materials, 2007. 19(13): p. 3096-3098. 27. Bao, J., Liang, Y., Xu, Z., and Si, L., Facile Synthesis of Hollow Nickel Submicrometer Spheres. Advanced Materials, 2003. 15(21): p. 1832-1835. 28. Sun, X. and Li, Y., Hollow carbonaceous capsules from glucose solution. Journal of Colloid and Interface Science, 2005. 291(1): p. 7-12. 29. Zhang, X. and Li, D., Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres. Angewandte Chemie International Edition, 2006. 45(36): p. 5971-5974. 30. Liu, Y., Chu, Y., Zhuo, Y., Dong, L., Li, L., and Li, M., Controlled Synthesis of Various Hollow Cu Nano/MicroStructures via a Novel Reduction Route. Advanced Functional Materials, 2007. 17(6): p. 933-938. 31. Xu, H. and Wang, W., Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angewandte Chemie International Edition, 2007. 46(9): p. 1489-1492. 32. Cong, H. P. and Yu, S. H., Hybrid ZnO–Dye Hollow Spheres with New Optical Properties by a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide. Advanced Functional Materials, 2007. 17(11): p. 1814-1820. 33. Wang, W. Z., Poudel, B., Wang, D. Z., and Ren, Z. F., Synthesis of PbTe Nanoboxes Using a Solvothermal Technique. Advanced Materials, 2005. 17(17): p. 2110-2114. 34. Yu, T., Park, J., Moon, J., An, K., Piao, Y., and Hyeon, T., Synthesis of Uniform Goethite Nanotubes with Parallelogram Cross Section. Journal of the American Chemical Society, 2007. 129(47): p. 14558-14559. 35. Liu, T., Xie, Y., and Chu, B., Use of Block Copolymer Micelles on Formation of Hollow MoO3 Nanospheres. Langmuir, 2000. 16(23): p. 9015-9022. 36. Zhang, D., Qi, L., Ma, J., and Cheng, H., Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer–Surfactant Solutions. Advanced Materials, 2002. 14(20): p. 1499-1502. 37. Ji, X., Li, G., and Huang, X., The Synthesis of Hollow CaCO3 Microspheres in Mixed Solutions of Surfactant and Polymer. Materials Letters, 2008. 62(4–5): p. 751-754. 38. W. Ostwald, Z. Phys. Chem. 1900, 34, 495. 39. A. D. Smigelskas, E. O. Kirkendall, Trans. Am. Inst. Min. Metall. Pet. Eng. 1947, 171, 130. 40. Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., and Alivisatos, A. P., Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004. 304(5671): p. 711-714. 41. Yin, Y., Erdonmez, C. K., Cabot, A., Hughes, S., and Alivisatos, A. P., Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials, 2006. 16(11): p. 1389-1399. 42. Peng, S. and Sun, S., Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles. Angewandte Chemie International Edition, 2007. 46(22): p. 4155-4158. 43. Cabot, A., Puntes, V. F., Shevchenko, E., Yin, Y., Balcells, L., Marcus, M. A., Hughes, S. M., and Alivisatos, A. P., Vacancy Coalescence during Oxidation of Iron Nanoparticles. Journal of the American Chemical Society, 2007. 129(34): p. 10358-10360. 44. Liang, H. P., Zhang, H. M., Hu, J. S., Guo, Y. G., Wan, L. J., and Bai, C. L., Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie International Edition, 2004. 43(12): p. 1540-1543. 45. Vasquez, Y., Sra, A. K., and Schaak, R. E., One-Pot Synthesis of Hollow Superparamagnetic CoPt Nanospheres. Journal of the American Chemical Society, 2005. 127(36): p. 12504-12505. 46. Sun, Y. and Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002. 298(5601): p. 2176-2179. 47. Sun, Y. and Xia, Y., Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes. Analytical Chemistry, 2002. 74(20): p. 5297-5305. 48. Sun, Y., Mayers, B. T., and Xia, Y., Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters, 2002. 2(5): p. 481-485. 49. Sun, Y., Mayers, B., and Xia, Y., Metal Nanostructures with Hollow Interiors. Advanced Materials, 2003. 15(7-8): p. 641-646. 50. Kim, D., Park, J., An, K., Yang, N. K., Park, J. G., and Hyeon, T., Synthesis of Hollow Iron Nanoframes. Journal of the American Chemical Society, 2007. 129(18): p. 5812-5813. 51. Xiong, Y., Wiley, B., Chen, J., Li, Z. Y., Yin, Y., and Xia, Y., Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie (International ed. in English), 2005. 44(48): p. 7913-7917. 52. Zeng, H., Cai, W., Liu, P., Xu, X., Zhou, H., Klingshirn, C., and Kalt, H., ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal−Semiconductor Interface, Improvement of Blue Emission and Photocatalysis. ACS Nano, 2008. 2(8): p. 1661-1670. 53. Yang, J., Peng, J., Zhang, Q., Peng, F., Wang, H., and Yu, H., One-Step Synthesis and Characterization of Gold–Hollow PbSx Hybrid Nanoparticles. Angewandte Chemie International Edition, 2009. 48(22): p. 3991-3995. 54. Huang, S., Huang, J., Yang, J., Peng, J. J., Zhang, Q., Peng, F., Wang, H., and Yu, H., Chemical Synthesis, Structure Characterization, and Optical Properties of Hollow PbSx–Solid Au Heterodimer Nanostructures. Chemistry – A European Journal, 2010. 16(20): p. 5920-5926. 55. An, K., Kwon, S. G., Park, M., Na, H. B., Baik, S.-I., Yu, J. H., Kim, D., Son, J. S., Kim, Y. W., Song, I. C., Moon, W. K., Park, H. M., and Hyeon, T., Synthesis of Uniform Hollow Oxide Nanoparticles through Nanoscale Acid Etching. Nano Letters, 2008. 8(12): p. 4252-4258. 56. Ohmori, M. and Matijević, E., Preparation and Properties of Uniform Coated Colloidal Particles. VII. Silica on Hematite. Journal of Colloid and Interface Science, 1992. 150(2): p. 594-598. 57. Wilcox, D. L., Berg, M., Bernat, T., Kellerman, D., CochranJr, J. K., Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Applications, Mater. Res. Soc. Symp. Proc. 1995, Vol. 372, MRS Pittsburgh, PA. 58. Cochran, J. K., Ceramic Hollow Spheres and their Applications. Current Opinion in Solid State and Materials Science, 1998. 3(5): p. 474-479. 59. Zhou, J., Wu, W., Caruntu, D., Yu, M. H., Martin, A., Chen, J. F., O'Connor, C. J., and Zhou, W. L., Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application. The Journal of Physical Chemistry C, 2007. 111(47): p. 17473-17477. 60. Zhou, W., Gao, P., Shao, L., Caruntu, D., Yu, M., Chen, J., and O'Connor, C. J., Drug-Loaded, Magnetic, Hollow Silica Nanocomposites for Nanomedicine. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(3): p. 233-237. 61. Sokolova, V. and Epple, M., Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells. Angewandte Chemie International Edition, 2008. 47(8): p. 1382-1395. 62. Cai, Y., Pan, H., Xu, X., Hu, Q., Li, L., and Tang, R., Ultrasonic Controlled Morphology Transformation of Hollow Calcium Phosphate Nanospheres: A Smart and Biocompatible Drug Release System. Chemistry of Materials, 2007. 19(13): p. 3081-3083. 63. Wei, W., Ma, G. H., Hu, G., Yu, D., McLeish, T., Su, Z. G., and Shen, Z. Y., Preparation of Hierarchical Hollow CaCO3 Particles and the Application as Anticancer Drug Carrier. Journal of the American Chemical Society, 2008. 130(47): p. 15808-15810. 64. Kasavajjula, U., Wang, C., and Appleby, A. J., Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. Journal of Power Sources, 2007. 163(2): p. 1003-1039. 65. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J. M., Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499. 66. Lou, X. W., Deng, D., Lee, J. Y., and Archer, L. A., Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials, 2008. 20(20): p. 6562-6566. 67. Ma, H., Cheng, F., Chen, J. Y., Zhao, J. Z., Li, C. S., Tao, Z. L., and Liang, J., Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Advanced Materials, 2007. 19(22): p. 4067-4070. 68. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., and van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377. 69. Lou, X. W., Yuan, C., Rhoades, E., Zhang, Q., and Archer, L. A., Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells. Advanced Functional Materials, 2006. 16(13): p. 1679-1684. 70. Lou, X. W., Li, C. M., and Archer, L. A., Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials, 2009. 21(24): p. 2536-2539. 71. Wang, X., Wu, X. L., Guo, Y. G., Zhong, Y. t., Cao, X. q., Ma, Y., and Yao, J. n., Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Advanced Functional Materials, 2010. 20(10): p. 1680-1686. 72. Zhang, H., Zhu, Q., Zhang, Y., Wang, Y., Zhao, L., and Yu, B., One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. Advanced Functional Materials, 2007. 17(15): p. 2766-2771. 73. Zhao, Q., Gao, Y., Bai, X., Wu, C., and Xie, Y., Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts. European Journal of Inorganic Chemistry, 2006. 2006(8): p. 1643-1648. 74. Li, X. L., Lou, T. J., Sun, X. M., and Li, Y. D., Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorganic Chemistry, 2004. 43(17): p. 5442-5449. 75. Kim, S. J., Hwang, I. S., Choi, J. K., Kang, Y. C., and Lee, J. H., Enhanced C2H5OH Sensing Characteristics of Nano-Porous In2O3 Hollow Spheres Prepared by Sucrose-Mediated Hydrothermal Reaction. Sensors and Actuators B: Chemical, 2011. 155(2): p. 512-518. 76. Lou, X. W., Wang, Y., Yuan, C., Lee, J. Y., and Archer, L. A., Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials, 2006. 18(17): p. 2325-2329. 77. Zhang, W. D., Xu, B., and Jiang, L. C., Functional Hybrid Materials Based on Carbon Nanotubes and Metal Oxides. Journal of Materials Chemistry, 2010. 20(31): p. 6383-6391. 78. Li, H., Bian, Z., Zhu, J., Zhang, D., Li, G., Huo, Y., Li, H., and Lu, Y., Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. Journal of the American Chemical Society, 2007. 129(27): p. 8406-8407. 79. Zeng, Y., Wang, X., Wang, H., Dong, Y., Ma, Y., and Yao, J., Multi-Shelled Titania Hollow Spheres Fabricated by a Hard Template Strategy: Enhanced Photocatalytic Activity. Chemical Communications, 2010. 46(24): p. 4312-4314. 80. Yu, J. and Zhang, J., A Simple Template-Free Approach to Tio2 Hollow Spheres with Enhanced Photocatalytic Activity. Dalton Transactions, 2010. 39(25): p. 5860-5867. 81. Lv, K., Yu, J., Deng, K., Sun, J., Zhao, Y., Du, D., and Li, M., Synergistic Effects of Hollow Structure and Surface Fluorination on the Photocatalytic Activity of Titania. Journal Of Hazardous Materials, 2010. 173(1–3): p. 539-543. 82. Cao, S. W. and Zhu, Y. J., Hierarchically Nanostructured α-Fe2O3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment. The Journal of Physical Chemistry C, 2008. 112(16): p. 6253-6257. 83. Zhang, H., Zhang, X., and Yang, X., Facile Synthesis of Monodisperse Polymer/SiO2/Polymer/TiO2 Tetra-Layer Microspheres and the Corresponding Double-Walled Hollow SiO2/TiO2 Microspheres. Journal of Colloid and Interface Science, 2010. 348(2): p. 431-440. 84. Liu, Z., Sun, D. D., Guo, P., and Leckie, J. O., One-Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates. Chemistry – A European Journal, 2007. 13(6): p. 1851-1855. 85. Fan, H. J., Gösele, U., and Zacharias, M., Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007. 3(10): p. 1660-1671. 86. Caruso, F., Shi, X., Caruso, R. A., and Susha, A., Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials, 2001. 13(10): p. 740-744. 87. Chen, G. C., Kuo, C. Y., and Lu, S. Y., A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells. Journal of the American Ceramic Society, 2005. 88(2): p. 277-283. 88. Liang, Z., Susha, A., and Caruso, F., Gold Nanoparticle-Based Core−Shell and Hollow Spheres and Ordered Assemblies Thereof. Chemistry of Materials, 2003. 15(16): p. 3176-3183. 89. Wang, L., Ebina, Y., Takada, K., and Sasaki, T., Ultrathin hollow nanoshells of manganese oxide. Chemical Communications, 2004(9): p. 1074-1075. 90. Wang, Ebina, Y., Takada, K., and Sasaki, T., Ultrathin Films and Hollow Shells with Pillared Architectures Fabricated via Layer-by-Layer Self-Assembly of Titania Nanosheets and Aluminum Keggin Ions. The Journal of Physical Chemistry B, 2004. 108(14): p. 4283-4288. 91. Wang, D. and Caruso, F., Polyelectrolyte-Coated Colloid Spheres as Templates for Sol−Gel Reactions. Chemistry of Materials, 2002. 14(5): p. 1909-1913. 92. Eiden, S. and Maret, G., Preparation and Characterization of Hollow Spheres of Rutile. Journal of Colloid and Interface Science, 2002. 250(2): p. 281-284. 93. Kim, T. H., Lee, K. H., and Kwon, Y. K., Monodisperse hollow titania nanospheres prepared using a cationic colloidal template. Journal of Colloid and Interface Science, 2006. 304(2): p. 370-377. 94. Wang, P., Chen, D., and Tang, F. Q., Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis. Langmuir, 2006. 22(10): p. 4832-4835. 95. Cheng, X., Chen, M., Wu, L., and Gu, G., Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres. Langmuir, 2006. 22(8): p. 3858-3863. 96. Lu, Y., McLellan, J., and Xia, Y., Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir, 2004. 20(8): p. 3464-3470. 97. Chen, M., Wu, L., Zhou, S., and You, B., A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Advanced Materials, 2006. 18(6): p. 801-806. 98. Cornelissen, J. J. L. M., Connor, E. F., Kim, H. C., Lee, V. Y., Magibitang, T., Rice, P. M., Volksen, W., Sundberg, L. K., and Miller, R. D., Versatile Synthesis of Nanometer Sized Hollow Silica Spheres. Chemical Communications, 2003(8): p. 1010-1011. 99. zu Putlitz, B., Landfester, K., Fischer, H., and Antonietti, M., The Generation of “Armored Latexes” and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes. Advanced Materials, 2001. 13(7): p. 500-503. 100. Song, X. and Gao, L., Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol−Gel Process and Enhanced Photocatalytic Activities. The Journal of Physical Chemistry C, 2007. 111(23): p. 8180-8187. 101. Velikov, K. P. and van Blaaderen, A., Synthesis and Characterization of Monodisperse Core−Shell Colloidal Spheres of Zinc Sulfide and Silica. Langmuir, 2001. 17(16): p. 4779-4786. 102. Hosein, I. D. and Liddell, C. M., Homogeneous, Core−Shell, and Hollow-Shell ZnS Colloid-Based Photonic Crystals. Langmuir, 2007. 23(5): p. 2892-2897. 103. Wolosiuk, A., Armagan, O., and Braun, P. V., Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres. Journal of the American Chemical Society, 2005. 127(47): p. 16356-16357. 104. Lu, L., Sun, G., Xi, S., Wang, H., Zhang, H., Wang, T., and Zhou, X., A Colloidal Templating Method To Hollow Bimetallic Nanostructures. Langmuir, 2003. 19(7): p. 3074-3077. 105. Cheng, F., Ma, H., Li, Y., and Chen, J., Ni1-xPtx (x = 0−0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry, 2007. 46(3): p. 788-794. 106. Huang, Z. and Tang, F., Preparation, Structure, and Magnetic Properties of Mesoporous Magnetite Hollow Spheres. Journal of Colloid and Interface Science, 2005. 281(2): p. 432-436. 107. Wang, D., Song, C., Hu, Z., and Fu, X., Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures. The Journal of Physical Chemistry B, 2004. 109(3): p. 1125-1129. 108. Wang, J., et al., Fabrication, Assembly and Magnetic Properties of Nickel Hollow Nanoballs. Modern Physics Letters B, 2006. 20(10): p. 549-555 109. Jin, P., Chen, Q., Hao, L., Tian, R., Zhang, L., and Wang, L., Synthesis and Catalytic Properties of Nickel−Silica Composite Hollow Nanospheres. The Journal of Physical Chemistry B, 2004. 108(20): p. 6311-6314. 110. Yoshikawa, H., Hayashida, K., Kozuka, Y., Horiguchi, A., Awaga, K., Bandow, S., and Iijima, S., Preparation and Magnetic Properties of Hollow Nano-Spheres Of Cobalt and Cobalt Oxide: Drastic Cooling-Field Effects on Remnant Magnetization Of Antiferromagnet. Applied Physics Letters, 2004. 85(22): p. 5287-5289. 111. Ohnishi, M., Kozuka, Y., Ye, Q. L., Yoshikawa, H., Awaga, K., Matsuno, R., Kobayashi, M., Takahara, A., Yokoyama, T., Bandow, S., and Iijima, S., Phase Selective Preparations and Surface Modifications of Spherical Hollow Nanomagnets. Journal Of Materials Chemistry, 2006. 16(31): p. 3215-3220. 112. 汪建民, "材料分析," 中國材料科學學會. 113. 李正中, "薄膜光學與鍍膜技術," 10, 292-293 (1999). 114. Tseng, A. A., Recent Developments in Nanofabrication Using Focused Ion Beams. Small, 2005. 1(10): p. 924-939. 115. Wu, Y. and Yang, P., Melting and Welding Semiconductor Nanowires in Nanotubes. Advanced Materials, 2001. 13(7): p. 520-523. 116. Jae-Wook Lee, Kyung-Hwan Kwak, Hyoungsub Kim and Cheol-Woong Yang, In-Situ Annealing Study on the Thermal Stability of Nickel Germanides.Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 677∼680 117. Tang, J., Wang, C. Y., Xiu, F., Lang, M., Chu, L. W., Tsai, C. J., Chueh, Y. L., Chen, L. J., and Wang, K. L., Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors. ACS Nano, 2011. 5(7): p. 6008-6015. 118. Ghoshtagore, R. N., Diffusion of Nickel in Amorphous Silicon Dioxide and Silicon Nitride Films. Journal of Applied Physics, 1969. 40(11): p. 4374-4376. 119. Kwon, J. Y., Yoon, T. S., Kim, K. B., and Min, S. H., Comparison of the Agglomeration Behavior of Au And Cu Films Sputter Deposited on Silicon Dioxide. Journal Of Applied Physics, 2003. 93(6): p. 3270-3278.
|